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Software systems emerge from mere keystrokes to form intricate functional networks connecting many
collaborating modules, objects, classes, methods, and subroutines. Building on recent advances in the study of
complex networks, | have examined software collaboration graphs contained within several open-source soft-
ware systems, and have found them to reveal scale-free, small-world networks similar to those identified in
other technological, sociological, and biological systems. | present several measures of these network topolo-
gies, and discuss their relationship to software engineering practices. | also present a simple model of software
system evolution based on refactoring processes which captures some of the salient features of the observed
systems. Some implications of object-oriented design for questions about network robustness, evolvability,
degeneracy, and organization are discussed in the wake of these findings.
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[. INTRODUCTION of a small set of components at a time. But the combined and
persistent action of implementation, refactoring, composi-
In both the organic forms of nature and the engineeredion, extension, and adaptation leads to emergent software
artifacts of human society, complex systems grow and evolv@rganizations whose structures lie outside the realm of ex-
to reveal intricately networked organizations. Surprisingly,Plicit design. Understanding the large-scale structural orga-
the underlying structures of these networks—including theizations that form in software networks is increasingly im-
Internet[1], the World Wide Web[2,3], collaborations in Portant not only for applications developed by distributed,
science[4,5] and cinema[6,7], interactions of proteins in [00Sely coupled teams, but also for emergent computations
yeast[8], and metabolic pathways in a variety of organismsthat arise in adaptive, self-organizing systems qf autonomous
[9]—have recently been found to share many “scale-free’cOMputing agents. More broadly, understanding the func-

and “small-world” qualities, which can be rather different tional organization of evolvable software systems may pro-

from those found in simple random networks. These discovylde models, metaphors, and tools to help us understand the

forces that serve to organize other classes of complex net-

eries have served to draw together many disparate fields inWorks whose informational structures may not be as readily
an emerging science of “complex networks,” which aims to apparént

unravel the principles by which networked systems form, The remainder of this section provides an overview of

evolve, and remain robust and adaptable in the face Ofyme relevant aspects of software design, and describes in
changing environments0,11. _ more detail the nature of the collaboration networks exam-
Software systems represent another important class ghed nhere, specifically class collaboration graphs and subrou-
complex networks, which to date have received relativelytine call graphs from several existing open-source software
little attention in this field. Software is built up out of many systems. Section |l examines the structure of those collabo-
interacting units and subsystems at many levels of granularation networks, describes their connection to other recently
ity (subroutines, classes, source files, libraries),eand the  studied complex networks, and discusses some of the soft-
interactions and collaborations of those pieces can be used teare engineering implications of those observations. Related
define networks or graphs that form a skeletal description ofvork by others is discussed in Sec. Ill. In Sec. IV, | present
a system. Software systems are of course important in thea simple model of evolving software systems based on refac-
own right, as the centerpiece of the information-based worldoring processes which captures some of the essential fea-
in which we now find ourselves. But they also suggest soméures of the observed systems. Section V highlights a few
novel perspectives in the study of complex networks. Espeissues suggested by the synergies among software systems,
cially important is the fact that software systems are orgaebject-oriented design, complex networks, and systems biol-
nized to be at once both highly functional and highly evolv-ogy. Section VI provides a summary.
able, with evolvability often implemented through collective
and collaborative designs that target interfacial specificity as
an important controlling parameter. This substantial empha-
sis on evolvability makes software systems somewhat differ-
ent from other engineered systems, and closer in some ways Software engineering aims to decompose complex com-
to evolving biological systems. putational functionality into many separate but interlocking
Design is a central element of software construction, angbieces. Rather than reimplementing similar computations ex-
many design methodologies deal explicitly with the structureplicitly in every new context, programmers develop abstrac-
of software networks, most often addressing the interactionsons of functions and datatypes that can be used many times,

A. Collaboration in software systems:
Function and evolvability
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in multiple contexts. The ability to reuse existing code cantween subsystems, which enables developers to avoid con-
both speed the process of adding new functionaléipce  straints and commitments that make it difficult to change one
new code need not be writteand facilitate the process of part of a system without changing many others.

modifying existing functionalitysince changes can be made Design patterng12], for example, are an important class
to a single reused piece of code, rather than to multiple simief strategies to support software system evolvability. These
lar versions of code strewn throughout a large application patterns are motifs describing the relationships among col-
The process of computation, therefore, involves collaborataborating classes or objects in an object-orier{te®) soft-

tion: the distribution of responsibility for computation among ware system which are effective at encapsulating variability
multiple software elements, such as objects, classes, methnd change. Different patterns identify different aspects of a
ods, subroutines, modules, and components. These collabgystem which are likely to change; those aspects might in-
rations allow elaborate computational tasks to be built up irclude how objects are created, which objects need to com-
a modular and hierarchical fashion, in loose analogy with thenunicate with one another, or what particular algorithms are
way that sophisticated electronic circuits are built up fromysed to solve a problem. The highly variable elements of a
reusable, low-level components. system are then encapsulated behind generic interfaces or
~ Software collaborations imply dependency relationshipsgegicated objects that act as brokers to mediate computa-
in that some computational elemertesg., classes and sub- {iona| activity, thereby decoupling objects so as to avoid ex-

routines geedkothers in ?rd](car tc]zt carrydout. piece; gf th?ircess dependencies that can inhibit evolvability. Design pat-
appointed task. Qne goal of software design and GevVelofy ng ang related techniques are typically applied at a small
ment, therefore, is to construct an optimal or near-optima

: . cale, at the microstructural level describing interactions
system of d_epe_ndency relationships, whereby core elemen ?nong a few objects. An open question, therefore, is how
are reused in d|fferent_ contexts to perform recurring fu.nda'microstructural design methodologies conspire in the large to
mental tasks, with minimally constraining specializations

dded in hiaher functional lavers in order to build N rform macroscopic software structures.
addea gher functional 1ayers in order 1o build upon or g, tion and evolvability are of course central concepts
combine those fundamental tasks. The utility of minimal spe-

cialization (typically in the types of data being passed be-m the description of biological systems, different in impor-
tween subroutines and methds tied to the goal of code tant ways from their meaning in software engineering. While

- coftw its that functi | der highl . Isoftware engineering involves intelligent action, biological
reuse. software units that function only under ughly Specialy, g tion js blind, and does not. Nonetheless, from a systems
ized conditions are generally less able to be broadly reuseé

than th its that : | h ializati erspective, there may be forms of network organization
an those units that require only as much specialization as fg; ., support adaptations that are applicable to both blind

D . ; - . recognizing the value of prototyping and other forms of in-
cess of subdividing computations into minimal units andteractive, trial-by-error design, in an effort to “embrace

generating complexity by combining those pieces does incu&hange" rather than struggle against the rapid pace of soft-
some overhead in computational performance. In scientifi

. :  SclentiliGyare evolution[13]. Many of the software design patterns
computing, the need for high performance has hIStOrICa"ymentioned above, which are now codified and part of a de-

outyvegf:jed other gfs'gn fcgnfernsé Ifead;ng t?tm&r(et Coarbsl%'eloper’s standard repertoire, were initially emergent and re-
grained decompositions of data and functionality that ena %urring solutions that developers uncovered in their quest to

efficient numer!call processing on Iarge chunks of da’Fa UN€THuild flexible, reusable code that could operate in rapidly
cumbered by indirection and function calls. Ongoing re'changing environments

searc_h in the f_ield of sci_entific computing aims to _develop The distributed and collaborative nature of software de-
technlques fc_)r incorporating advanC(_ad softwarg de.S|gn met@"lgn is increasingly relevant at the social level of program-
odologies without incurring excessive penalties in perfor—mer interaction, as well. Many software projects begin as
maEr;c%' ft ¢ N lex tasks i | small efforts led by one or a few people, only to grow into
uiiding up software 1o carry out compliex tasks IS only large activities involving many developers scattered around

one goal, however. The resulting system must alseum- the globe, a transition that has been dubbed “from the cathe-

able that is, transformable into a new system to accomplisty - e bazaar[14]. While organized design methodolo-
new but related tasks without excessive cost or disruption t%:

-gies that support software growth and change are useful even
the system as a whole. The need to accommodate change i PP g 9

or driving f . ft ; ina: this miaht Pthe smallest projects, they become especially important in
major driving Torce in sottware engineering, this might N~ yiqeip e multideveloper efforts where many individuals

clude changes in external user requirements, underlyingnay work only on small pieces of the overall system. The
hardware platforms, forms of input data, or types of algo-

. o 9~ work presented here does not explicitly examine the effects
rithms used. In poorly structured code, modifying or adding P phcitly

. ; : of transformations in the social infrastructure of developers,
a single feature may require updates to many files or subro

Yut examinations of that sort could prove quite interesting.
tines, which can themselves then cascade throughout the sys- P d 9

tem. To combat this, many strategies have been developed to
support the simultaneous demands of function and evolvabil-

ity, so that code modifications remain localized. Many of The interactions among software components are multidi-
these strategies hinge on instituting sufficient decoupling bemensional and multifaceted, and any representation of a soft-

B. Software collaboration graphs
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ware system typically involves a slice or projection through class A { A
that complex space of interactior@all graphsthat describe . /I definition of class A
the calling of subroutines or methods by one another have class B{ B—A
long been used to understand the structure and execution of A* ab; [El
procedural activity in software systems, whitass and/or // rest of definition of class B
object collaboration diagramsare used to glean insight into |5 C—A C—B
the relationships among abstract datatypes in OO systems. class C { Zl
Static graphs typically describe the set of interactions that are Q: g‘c’ |:
p033|bl_e, yvh|le_dy_nam|c graphs generated during program p rest’ofdefiniiion ofclass C |p—=n
execution identify interactions that actually take place under ¥ D—~C
specific run-time conditions. This work addresses static class class D: public C {
collaboration graphs arising in OO systems and static call A* ad; D

// rest of definition of class D

graphs arising in procedural systems, both of which can be
parsed from source code.

%

In OO systems, the definition of objects and their interac-

. . FIG. 1. Sample class collaboration grafiight) representing
tions plays a central role. Objects represent datatypes that are ationship among classés B, C, andD, as specified by & +

defined to. eXtIend the b.aSIC’ nat';lle O!atatyp?s prOV'SEd bglass definitiongleft). Graph nodes are classes, and graph edges are
programming languageéntegers, floating point NUMDErS, i qctaq collaboration relationships between classes. This definition
characters, etf. in order to develop more complex, of class collaboration involves both aggregation relationships (

application-specific, abstractions of data and their associated o c_,Ao c—B. and D— A) and inheritance/subclassing rela-
behaviors(which are implemented via methgdSypically, tionships O — C).

layers of objects are defined, building increasingly complex
representations by aggregating simpler ones. An object regimulation of material§16,17); and version 1.0.2 of the
resenting a vector field, for example, may combine simpleAbiWord word processing prografi8]. The call graphs are
objects representing vectors and spatial fields, which cafrom version 2.4.19 of the kernel of the Linux operating
themselves be defined independently of each ofAarector  system, version 3.23.32 of the MySQL relational database
object, for example, might provide support for adding twosystem, and version 1.2.7 of the XMMS multimedia system.
vectors and computing their dot product, whereas a spatidbetails on the construction and/or origin of these networks is
field object might support a coordinate-based lookup to reprovided in the Appendix.
trieve the value of the field at a specified location. Both
vectors and spatial fields might themselves be built up from
even simpler objects, such as arrayGlasses describe the
form of objects in OO systems, and objects are instantiated at
run time from their class descriptions. Connected components in a graph are those subgraphs for

Class collaboration is the process by which more comwhich all nodes in the subgraph are mutually reachable by
plex, multifunctional classes are built from simpler ones. Intraversing edges in the subgraph. For a directed graph, one
this work, class collaboration is defined to include the intercan define both weakly connected compongWCC) and
action of classes both throughheritance—i.e., where one strongly connected componen8CCO. WCC are those con-
class is defined as a subclass of another—and throughected components found in an undirected version of the
aggregation—i.e., where one class is defined to hold an in-graph(i.e., by treating all edges as bidirectiopathile SCC
stance of another class. A simple illustrative example of suclare those connected components mutually reachable by tra-
a graph is shown in Fig. 1. The direction of class collaborawversing directed edges. By definition, every node in a di-
tion and subroutine calling follows standard software engirected graph will be in some WCC; not all nodes, however,
neering convention reflecting the flow of control in a system:belong to a SCC.
an edge in a class collaboration graph is directed from class Connected component analysis reveals trends across the
B to classA if B makes reference tin its definition(either  six systems of interest, which are summarized in Table 1. All
through inheritance or aggregatiprand an edge in a call six systems consist of a single dominant WCC, comprising a
graph points from nodg to f if subroutineg calls subroutine large fraction of the total nodes in the systéranging from
f from within its scope. The definition of class collaboration 86—99 %, and a few(5—46 very small remaining WCCs. A
used here allows one to decompose the full class collaborgicture of the largest WCC for the VTK system is shown in
tion graph into two separate subgraphs, the inheritance gragfig. 2. Conversely, few nodes belong to any S@ss than
and the aggregation graph. about 4% in five of the six systemsThe lack of strong

| have examined collaboration networks associated withmembership in SCCs is rather different from that found in
six different open-source software systems. These includether directed complex networks, such as the W\\8jvand
class collaboration graphs for three OO systems written irvarious metabolic networkg9]. This difference is perhaps
C++, and call graphs for three procedural systems writtemot surprising, given the nature of the software graphs under
in C. The class collaboration graphs are from version 4.0 ofnvestigation, which largely reflect aggregatiéof data in
the VTK visualization library{15]; the CVS snapshot dated the case of the class collaboration graphs, or function in the
4/3/2002 of Digital Material(DM), a library for atomistic case of call graphs SCCs reflect subgraphs that are mutu-

Il. RESULTS

A. Connected components
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TABLE I. Connected component analysis for the six software
systems of interest. Shown for each graph are(fenumber of ¥
nodes in each grapkh) number of edges in each gragh) number 4
of WCCs, (d) number of nodes in the largest WC@) number of ‘ i a B
edges in the largest WC) number of SCCsg) number of nodes 4
in the largest SCCh) number of edges in the largest SCC, dhd
the fraction of nodes belonging to any SCC. All six systems are
characterized by a single dominant WCC, and little membership in
SCCs.

VTK DM AbiWord  Linux MySQL XMMS

(@ 788 187 1096 5420 1501 1097
(b) 1389 278 1857 11460 4245 1901
(© 6 10 19 a7 10 36

(d) 771 162 1035 5285 1480 971
(e) 1374 258 1798 11370 4231 1809

) 4 2 46 10 12 0 ‘
(@) 5 6 25 6 7 0

(h) 8 10 72 9 10 0

() 0.0165 0.0428 0.1332 0.0057  0.02 0.0

ally reachable, but the hierarchical directionality of use im-
plicit in software aggregation makes mutually reachable

clusters of this sort unlikely, and undesirable from a software

development standpoint. While generic base classes art
reachable from their derived subclasses, for example, the op
posite is generally not true, since that would undermine the
genericity inherent in those base classes. Similarly, one sub-
routine may call another as part of its execution, but, typi-
cally, the reverse is not true.

r
=
Caf

FIG. 2. Largest weakly connected component of the class col-
laboration graph for the VTK systeiitfayout courtesy of the Tulip
graph visualization packape
B. Degree distributions

Degree distributions, summarizing the connectivity offithms of these distributions in Fig. 3N.(k) is an unnor-
each node in a graph, are a feature that distinguish manalized integral of the probability distributioR(k); for
complex networks from simple random graphs. For eactP(k)~k™7, Ng(k)~k~7"*.] These distributions reveal a
nodei in a directed graph, there is both an in-degkfle the ~ power-law scaling regiortstraight line on a log-log plot
number of incoming edges to notleand an out-degrei"", followed by a.faster decay_ at larde The extents of the
the number of outgoing edges from naddhe in- and out- power-law regions are adml_ttedly sme_lll, particularly for the
degree distributiond"(k) and P°U(k) indicate the prob- out-degree distributions, which one might argue to be repre-
ability of finding a node with a specified in-degree or out- S€ntative of exponential distributions. Power-law fits for all
degreek, respectively, in a given graph. Many complex 12 distributions have been carried out over the regions for
networks have recently been found to possess a “scale-freg¥hich they teXh'b't scaling, and the values of the exponents
degree distributiorf19], indicating a lack of characteristic ¥ andy°" are shown in the legends in Fig. 3. o
scale(or degreg in the distributionP(k). This implies that Interestingly, the class collaboration graphs shown in Fig.
P(k) obeys a power law over an extended range of degree% reveal a marked asymmetry between the in-degree and out-
k: P(k)~k~?, or perhaps a power law truncated by an ex-degree distributions, whereas the call graphs do not. In the
ponential cutoff: P(k)~k~7e . In contrast, a uniform class collaboration graphs, the out-degree exponent appears

= to be significantly larger 4°4'~3) than the in-degree expo-
random graph oN nodes and links on average per node nent (y"~2). For the procedural call graphs/"~ Ut

has a degree distribution with a characteristic stalevith ~2.5. For both sets of graphs, the in-degree distributions

P(k) decaying exponentially away froin[20]. tend to extend to highdg that is, it is more likely to find a

| have examined the in- and out-degree distributions ohode with many incoming links than outgoing links.
the large dominant WCC for each of the six software systems As noted, the three class collaboration graphs also each
of interest. For each WCC, | have computed the unnormaleontain an embedded inheritance graph. Since multiple in-
ized cumulative frequency distributiong” (k) andN2"(k), heritance is commonly avoide@ue to programming diffi-
whereN.(k) indicates the number of nodes in a graph withculties that it introduces the out-degree distributions of the
degree greater than or equalktoand have plotted the loga- inheritance graphs are strongly peakedkatO0 andk=1.
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FIG. 4. Scatter plot of the number of incoming links vs the
FIG. 3. Cumulative in-degree and out-degree distributionsnumber of outgoing links, for every node in each of the six systems
N.(k) for each of the six system&) VTK, (b) Digital Material,(c)  under consideratioria) VTK, (b) Digital Material,(c) AbiWord, (d)
AbiWord, (d) Linux, (&) MySQL, (f) XMMS. N.(k) is the number  Linux, (e) MySQL, and(f) XMMS.
of nodes in a graph with degree greater than or equél tdisto-
gram data for each distribution are shown with symbols. Lines in-existence of heavy-tailed in-degree distributions implies a
dicate power-law fitgstraight lines on log-log scaleto histogram  broad spectrum of reuse. Less interesting, perhaps, are those
data in regions indicated; fits to in-degree distributions are repremany classes and subroutines that are neither heavily reused,
sented by solid lines, and fits to out-degree distributions by dashedor heavily constructed from other elements.
lines. The legends show the values of the power-law exponghts  Software engineering practice encourages reuse, that is,
and y°"! for each fitfwhereN(k)~k™7*]. large in-degree; so it is not surprising that the largest degrees
in these systems are for incoming links. It is not obvious,
owever, why the class in- and out-degree distributions
should be characterized by quantitatively different scaling
xponents. The fact that the procedural call graphs examined
0 not exhibit this in-out exponent inequality also suggests
urther avenues of study: first and foremost would be an
texamination of the call graphs associated with the three OO
“systems studied, to ascertain whether in-out asymmetry is a

inheritance-based associations of classegh as the rela- . oy of class collaboration or of object-oriented systems
tionshipsB—A, C—A, C—B, andD—A in Fig. 1). more generally.

Classes and subroutines with small out-degree are gener-
ally simple, since they do not aggregate other eleméifts.
they became too complex, there would be a pressure to break
them up into simpler pieces and introduce outgoing links.  Correlations among degrees can also provide insight into
Conversely, elements with large out-degree are generallthe structure of complex networks. The directedness of these
more complex because they aggregate behavior from margraphs allows us to examine the relationship between in-
others. Therefore, the existence of heavy-tailed and/or scalelegrees and out-degrees. Figure 4 shows this relationship for
free out-degree distributions suggests a broad spectrum efach of the six systems of interest, where every node in each
complexities. On the other hand, classes and subroutinegaph is represented by itk¥,k'") pair.
with large in-degree are—by definition—reused in many It is visually apparent in Fig. 4 that nodes with large out-
contexts, while those with small in-degree are not. Thus, thelegree generally have small in-degree, and those with large

The in-degree distributions for each of the three inheritanc
graphs, on the other hand, also exhibit rough power-law scal
ing, with exponentsy~2 (not shown. Therefore, insofar as

the in-degree distributions are concerned, the structur
forms of the overall collaboration graphs mirror those of thef
embedded inheritance graphs. The heavy tail in the ou
degree distribution, however, arises entirely from non

C. Degree correlations
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TABLE II. Degree correlation coefficientsa) For each of the  ment group. The source of the difficulty largely centered
six software systems, correlation &f" and k°* for each graph  around the conflicting roles th&MArray plays. On the one
node, for both thet full datasetSall k"), and for the reduced sets phand, the class is intended to be a primitive black box onto

i n ou i . . . . - .
with k=10 ork®"=10. (b) For each of the six software systems, \yhich more complicated functionality is to be layered, while
degree mixing coefficients, relating in- and out-degrees for eachy, yho same time, it is itself a complicated datatype with
edge in the graphs. The left column indicates the specific directed, o ntia| internal structure and external behavior. It would
degree correlation function. Also included is the correlation coefﬁ-be interesting to know whether other items with larae in- and
cient for an undirected version of each graph. 9 - . arg

out-degrees apparent in Fig. 4 have played similarly prob-
@ Infout VTK DM Abi  Linux MySQL XMMS lematic roles.m the development of those various systems.
The complexity of software components with large in- and

k=10 -0.48 0.01 -0.16 -0.18 -0.23 -0.75 out-degrees is highlighted in the software metrics literature,
All k 0.09 0.10 0.18 -0.01 -0.03 -0.07 for example, by the “fan-in fan-out complexity” metri@1],
(b) Mixing which states that complexity of a code module is propor-

tional to the square of the product of the fanfin-degree

In-in 0.088 —0.043 0.065 —0.005 0.114 0.067 and the fan—ou(out—degre}aof the module.
In-out —0.034 —0.010 0.083 —0.009 —0.067 —0.036 Another measure of degree correlation is the mixing by
Out-in —0.169 0.020  0.042 —0.098 —0.101 —0.180  degree of a grapti22]. This quantity measures the linear

Out-out 0.137 0.098 0.111 0.014 0.179 0.093 correlation of degrees over all edges of a graph, i.e., the
Undirected —0.194 —0.192 —0.084 —0.067 —0.083 —0.114  correlation of degreels andk; for all sitesi andj that define
an edge in a given graph, aggregated over all edges in that
graph. This reflects the tendency of nodes of similar degrees
in-degree have small out-degree. This trend can be verifietp be connected to one another. Most work on mixing by
by evaluating the lineatPearson correlation coefficient be- degree has focused on undirected graphs or undirected ver-
tween the setéki"} and{k°"% for those nodes with either a sions of directed graphs, for which there is a single correla-
large in-degree or large out-degréer both; a threshold tion coefficient of interest: cork( ,k;), relatingk; andk; for
value of at least ten edges has been chosen as a filter, sonig€ node pairi(j) that are linked by an edge in the graph. In
what arbitrarily as a demarcation between the dense core & directed graph, there are four possible correlation coeffi-
low-degree nodes and the sparser set of high-degree nodeients: corrk’",k?"), corr(k’"' k"), corr(k" k"), and
Table li(a) shows the correlation coefficient for each of the corr(k" ,k}”), where the index refers to the source node of
six software systems studied, demonstrating a negative cothe directed edge, arjdrefers to the destination node. Table
relation between in- and out-degrees for nodes with largél (b) shows the values of each of these correlation coeffi-
degree in five of the six datasets. Including the entire set ofients, for each of the six graphs in question. Also computed
nodes for each dataséte., not selecting only those nodes is the degree mixing of the undirected version of each soft-
with k=10) reveals, however, almost no correlation in theware graph. The undirected versions all show a weak nega-
call graph datdLinux, MySQL, XMMS), and weak positive tive correlation (dissortativity which suggests that nodes
correlation in the class collaboration dat&TK, DM, with similar degrees tend not to be connected to each other.
AbiWord). This anticorrelation of large in- and out-degreesThe directed graphs, however, tell a different story. There,
implies that, for the most part, there is a clear distinctionwe find—most significantly—a weak positive correlation
between large-scale producers of informatiarith high in-  (assortativity among out-degrees, that is, a tendency for
degree and large-scale consumefwith high out-degree  nodes with similar out-degrees to be connected. There is a
Simple components tend to be heavily reused, presumablyet weaker positive correlation among in-degrees. While
because they are generic and applicable to many differerthese correlations are rather weak, their magnitudes are typi-
contexts, whereas complex components do not, because thegl of those seen in a variety of other complex netw&.
are highly specialized and only applicable in limited con- The weak positive assortativity among out-degrees seen
texts. in the software networks is due in part to the hierarchical
There are, however, outliers to that trend of separationtayering of functionality. For example, in the VTK system, a
classes with both large in-degree and large out-degree ammmplex aggregated class with large out-degree such as the
evident in Figs. 48)—4(c). These classes have both signifi- vtkUnstructuredGrid does not collaborate directly with very
cant internal complexityassociated with aggregating the be- low-level objects(such asvtkObject); instead, it is built up
havior of several other clasgeand significant external re- out of collaborations with “mid-level” objects(such as
sponsibility. There is reason to expect that such classes couldkPolygon andvtkHexahedron), which themselves are ag-
be problematic insofar as software development is congregates built up from lower-level classes. Similarly, the
cerned. By way of informal case study, my experience withweaker positive assortativity among in-degrees for some of
development of the Digital MateridDM) systemFig. 4b)]  the graphs probably reflects the tendency for simpler objects
confirms such a suspicion. THeMArray class identified with large in-degree to collaborate with each other at the
implements both arraylike and treelike functionalities, and isbase of a hierarchy of functional layers. In the undirected
intended to be a primitive data structure for much of theversions of these graphs, the negative correlation observed
numerical computation in the system. CuriouddMArray  reflects in part the fact that nodes with a large out-degree are
caused the most persistent trouble within the DM developnot linked to the nodes with a large in-degree, because of the
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functional separation between producers and consumers de Uai mat mate At ot i TN oL mail m
scribed above. These results further emphasize that the di F
rectedness of these graphs is important. Newf2#} has - ) 1 (L2 - 1 F .
noted that sociological network®.g., scientific collabora- [, Aa 17 . 1T 7
! ) A _AAAA S e AL | _Aﬁh A |
tions) tend to be assortativgositively correlatey but that 01" "ué - F Fa, ] F afa 3
technological and biological networks are generally disassor-_ ; :“;A 1 F. “ 1 F “a :
tative. Clearly, for these software graphs, teasing out the de% - A‘ 10 . 1 F ™aa .
gree correlations requires examining directed edges. i a2, 0 4 17 A& 2 ]
0.01 -3 = -3 = A -3
D. Clustering and hierarchical organization é é “
A
Clustering—the tendency of a node’s neighbors to be ) 1 [ o ) ]
themselves neighbors in the graph—is a significant charac- [ S vl Lovssd o v v oo 2
teristic of small-world networks. While the results above in- ' ]
LRLLLL SLRLLL BLRLLL 1 LRLLL SLRLLLL BRLALLL

dicated the importance of graph directedness, clustering is B S B
typically measured on undirected graphs. For such a graph
the clustering coefficienC; of node i is defined asC;

=2n/k;(k;—1), wheren is the number of pairs of neighbors a8

e

A

of nodei that are linked, and; is the degree of node This 0.1 T Pl
quantity is simply the fraction of all possible pairs of neigh- ., - “Qﬁ ]
bors of node that are themselves linked in the graph. 53 : a1 [ ]

Recent work by Ravas=ztal. [23,24 suggests that ‘A: 4t s Aa
degree-dependent clustering of the folrtk) ~k ! is a sig- 0.01E A 3 F E I -
nature of hierarchical organization in networks, and can - “ 1 F 1t ]
serve to distinguish hierarchical from nonhierarchical scale- [ ast 1T 1 [ |
free networks. They also suggest that hierarchical organiza: (d)J H‘ (e)J . 0 S
tion serves to resolve the apparent dilemma between scale %%'7"*{g" 160 1000 T 10 100 1000 1 10 100 1000
free degree distributions on the one hamcich imply no k k k

characteristic scale of connectivitgnd modular structure on FIG. 5. Clustering coefficien€(k) vs degreek for undirected
the qther(whlich suggest conngctivities at the scale of thoseQ/ersions of each of the six software syster@¢k) is the average
consistent with modular unitsFigure 5 plots, for each of the - ¢y steringC for all nodes in a graph with degréeAlso shown for
six software graphs of interest, the degree-dependent clustefach graph ik ! scaling(dotted ling, suggestive of hierarchical
ing C(k), defined as the average clusteri@gfor nodes in  organization. Graphs ar@ VTK, (b) Digital Material, (c) Abi-
the undirected graph with degrée These data are roughly word, (d) Linux, (€) MySQL, (f) XMMS.

consistent with those presented in Rdf23,24), typically
showing a flaiC(k) for smallk which rolls over to & * tail
at largek (more clearly defined for the larger graph$he

k=1 tail is derived in Refs[23,24 for a specifically con- these calculations are presented in the Appendix. .
structed hierarchical model: therefore, the existenck of For each class, these three metrics can be related to the in-

scaling in real graphs would appear to be an indirect indica@nd put-dggrees of t_hat class; the linear correlation of these
tor of hierarchical organization. Nonetheless, given the hierMetrics with degree is reported in Table IIl. We see that all
archical nature of software design, further investigation ofthree metrics have a strong and positive correlation with out-
this sort of clustering in software graphs is warranted. Methdegree, and a weaker, negative correlation with in-degree.
ods for extracting modules and subsystems using the clustelrach of these metrics reflects a different facet of class com-
ing data may also provide insight into the organization ofPlexity (implementation size, interface size, revision Jate
these systemg23]. and we see that nodes with large out-degrees tend to be more
complex than those with large in-degrees, consistent with the
scenario outlined previously.

mitment to the VTK CVS source code repositpripetails on

E. Topology, complexity, and evolution

Software systems can be characterized by a variety of ) ) .
metrics, which can be compared to the underlying collabora- TABLE lll. For VTK only, correlation of various class metrics
tion network topology. The VTK system, in particular, has (source file size, number of methods, average revision vétk in-
been developed in a manner that facilitates such measuréIEIOI out-degrees.
ments. For every class in the VTK system, | have calculate
three quantities of interesta) total source file size for each

Q/TK class complexity measures In Out

class; (b) total number of methods defined for each classSource file size —-0.28 0.58
(including inherited methodsand (c) average revision rate Number of methods -0.26 0.61
for each class over the lifetime of the VTK projdeiverage Average revision rate -0.28 0.68

number of source file revisions per year, since initial com
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classegcorrelation=0.10), indicating a weak tendency for
collaborating classes to evolve at the same rate. But if we
restrict our focus to only those classes with large revision
rates, e.g., greater than 30 revisions per year on average, we

w—v out (Jan 1994)| 4

find a strong negative correlatiofcorrelation =—0.72).
- This implies thatclasses that evolve most quickly tend not to
- interact directly with each other
- The data in Table Il reveal that, in the VTK system,
- classes with large out-degrees tend to evolve more rapidly
. than do classes with large in-degrees. On the one hand, one
- might imagine that the information consumers with large
. out-degrees evolve more rapidly simply because they have
! greater implementation sizes and a larger number of methods
2 subject to revision. Alternatively, one might imagine that
evolution rate is primarily governed by the nature of connec-
T tions to other classes: information producers with large in-
degrees are constrained to remain station@ipce other
classes depend on thgnwhile information consumers are
generally forced to evolve to keep pace with changes in all
° the other classes that they aggregate but are generally uncon-
strained by large numbers of users. This latter scenario
. would suggest signatures of coevolution, that is, correlation
of evolution rates that are connected in the collaboration
graph.
. We saw in Fig. &) that there was a weak coevolutionary
- tendency on average for the entire VTK system, but a strong
anticorrelation of coevolution among rapidly evolving
classes. The rapidly evolving classes are primdgk/seen in
50 Table Ill) information consumers with large out-degrees,
which are part of specialized functional subsystems rather
than the more generic functional substrate. The strong anti-
FIG. 6. Facets of the evolutionary history of the VTK system. correlation of interactions among highly evolving classes
_(a) Comparison of the degree o_Iistributions for the VTK system i”may thus reflect a degree of modularity within the system,
its nascent statéelass collaboration graph as of Jan. 31, 1984d  hat s, the functional separation of different specialized sub-
for VTK version 4.0[as presented in Fig(8]. (b) Scatter plot of  gystems. Whatever weak coevolution there is, it appears to
class revision rates for the VTK collaboration graph. Each pointbe confined to the more generic substrate. Further work is

represents an edge in the graph; xrendy coordinates of the point needed to explore the relationships among evolution, con-
are given by the average revision rates of the outgoing source ar}q '

incoming destination node, respectively, for that edge. Note the ectivity, and constraint. Similar explorations are taking

anticorrelation of revision rates for those classes with large rateg Iacke within k;!o_lz)gy, to explorr]e thfe relc’t:ltl_on_slep betFweendnet-
(e.q., greater than 30 per ygar work connectivity(e.g., graphs of protein interactionan

evolution rate[25].

log, (N (k)

IS
(@]
I
|

w
o

N
o
0O 0 0000 O

—_
(=]

revision rate for incoming node

revision rate for outgoing node

The evolution of complex networks is a problem of great
interest, and the class revision history data for the VTK sys-
tem provide some insight into the evolutionary processes of The fields of software metrics and reverse engineering
software development, which are summarized in Fig. 6. Figexamine software systems in the aggregate, with significant
ure Ga) shows a comparison of the collaboration graph de-emphasis on measures of nodal degree in various software
gree distributions for the current VTK systdoa. 2002 with  graphs. By and large, however, their scale-free nature ap-
those for the system in its nascent state, at the end of Janugpgars to have escaped notice within those communities. Dis-
1994 (the VTK “reptile brain,” so to speak We see that the tributions of component connectivity are often summarized
heavy-tailed collaborative structure of the system was irin terms of means and variances, which are poor character-
place from the outset, although the in-out asymmetry wadzations of scale-free distributions. The asymmetry between a
less pronounced. Figure(t§ examines the coevolution of large in-degree and a large out-degree has long been identi-
classes that collaborate in the VTK system. For every edge ified by software engineers as an important element of design,
the VTK graph, the revision rates of the outgoing sourcesince a large out-degree indicates significant code reuse
node and the incoming destination node are plotted againsthile a large in-degree indicates excessive object complexity
each other. From these data, we find an interesting, and pdi26].
haps unexpected, trend. For the entire dataset, there is a weakThe existence of scale-free, small-world networks in soft-
positive correlation among revision rates for connectedvare graphs has been noted recently by a few groups, how-

Ill. RELATED WORK
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ever. Valverde and co-workef&7,28 have examined class they use to deal with sparse statistics in the tails of the dis-
collaboration graphs derived from the Java Developmentributions.
Framework 1.2JDK1.9) and the UbiSoft ProRally 2002 game  Both Potaniret al. and Wheeldon and Counsell make ref-
system. They have noted scale-free degree distributions arffence to the process of preferable attachment as a mecha-
larger-than-random clustering characteristic of small worldshism for generating scale-free networks, as outlined by Bara-
Their work does not distinguish, however, between incoming?@i and Albert (BA) [7]. Preferential attachment was
and outgoing links in the software networks they have stud®riginally proposed to describe the growth of the World Wide
ied; that is, they have formed undirected graphs by ignorinéNeb* but seems less well-suited to descnbe_th_e grovvth of
edge directionality. With undirected graphs, they could notSoftware systems, although S“UCh al"ttaqhment is indirectly re-
detect either the asymmetry between the in-degree and odgtéd in that low-specificity “hubs” will generally attract
degree exponents evident in Fig. 3 or the anticorrelation offore incoming links if they present broadly reusable abstrac-
large in-degree and large out-degree seen in Fig. 4. PerhaBQ”s- But the.BA preferential attachmenfc mode! is acknowl-
more importantly, ignoring the directionality of edges leads€dged to be incapable of generating hierarchical structure,
to different sorts of conclusions about the implications ofhich is clearly relevant for software design, and which is
software engineering guidelines. They claim that softwareeVident in power-law, degree-dependent clustering such as
design is predicated in part on the “rule of avoiding hubsS€en here in Fig. 5. _ _
(classes with large number of dependencies, that is, large Several features of the present research—including ex-
degre¢’ [27], which does not recognize that large out- aminations of degrge—dep_endent clustering, .correlat|on of
degrees and large in-degrees have very different softwareetwork topology with various class complexny'measures,
engineering implications. Valverdet al. [27], however, do and the evolutlonary history of class gollaboratlons—have
propose an interesting scenario by which minimization of0t been explored in the other works cited above. Also, the
development costs might lead to an optimal trade-off pelresent work |ntr0(_juces—|n the following section—a moc_jel
tween developing a small number of large, expensive comof software evolution based on a set of standard practices
ponents with few interconnections and a large number othat captures some of the salient features of the observed
small, inexpensive components with many interconnectionsSoftware networks.
They suggest that only suboptimal solutions can be found in
large, complex systems, leading to scale-free/small-world be-
havior; this is an interesting conjecture deserving further
study, perhaps within the context of synthetic models of soft-
ware systems, such as the one that | will introduce below.  As suggested earlier, software systems have a complex
Potaninet al. [29] have examined the structure of object structure not only to support the implementation of compli-
graphs, representing run-time snapshots of object intera@ated functionality, but also to allow for low-cost evolvabil-
tions in several OO programs. Object graphs are the dyity. It is an interesting question to ask, thereforow soft-
namic, run-time analogs of the static class collaboratiorware engineering practices used to enhance system
graphs studied here. Potandt al. observed power-law in- evolvability might alter the topological structure of software
degree and out-degree distributions, noting a tendency facollaboration graph8 An intriguing framework for address-
in-degree exponents to be clustered near 2.5, and out-degrggy such a question, and for generating models of evolving
exponents near 3, somewhat like the trend that | have olsoftware systems, is the set of processes collectively known
served for class collaborations in this work. They also noteasrefactoring[31], which aim to remove “bad smells” from
the strong separation of large in-degrees and large outode that inhibit evolvabilite.g., extendability, modifiabil-
degrees, similar to that presented here in Fig. 4. Ultimatelyity, maintainability, and readabili}y Refactoring tends to en-
developing a theory of the relationships between static classourage the development of smaller, more concise, single-
graphs and dynamic object graphs might prove useful to theurpose fragments of code(classes, methods, and
software engineering community. subroutinesthat can be reused in a wider range of contexts,
Wheeldon and Counse[B0] have identified power-law as opposed to larger, multipurpose pieces of code that often
relationships in several OO measures, including inheritanceontain duplicated program logic. Large methods and classes
and aggregation graph degrees, and numbers of methodsie often broken up into collections of smaller ones, with
fields, and constructors defined by classes in OO systemappropriate indirection from the former to the latter, leading
They treat inheritance and aggregation as two separate typesthe creation of more nodes and more edges in the resulting
of class collaboratiorfwhich they arg while | have chosen software graphs. Duplicated pieces of code are extracted
to define collaboration more broadly to include both. They fitfrom multiple locations in the source code, and localized in a
power laws to the full range of their distribution data, evensingle place to which other pieces of code refém. some
when there are apparent transitions between scaling behainstances, however, a developer may deem such indirection
iors (e.g., from power-law to exponentjaimaking compari- excessive and not worth the overhead; in those cases, refac-
son with the present work difficult. The numerical values oftoring techniques would suggest the removal of nodes and/or
the degree-distribution exponents they quote~() are the collapsing of hierarchiesMany refactoring techniques
rather different from those found here and in the work ofcan be cast in the language of optimization, by minimizing
Valverdeet al.[27] (y~2—3), but it is not clear whether or (or altogether removingbad smells that pervade software.
not they have corrected for the exponential bin sizes that Motivated by the basic observation that refactoring im-

IV. AREFACTORING-BASED MODEL
OF SOFTWARE EVOLUTION
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0110110010010 0110110010010
01101100 01101100

=1/(1+e (79T wherel is the length of the string under

consideration, antly and T are adjustable parameters. This
probability is constructed in analogy with the Fermi-Dirac
distribution of statistical mechanics, and reduces in the limit
T—0 to the rule that any function with length greater than

(@) (b) will be decomposedbut which allows that threshold to be

FIG. 7. Processes implemented in the simple refactoring modefc.uZZy for nonzgro tgmper_aty@. A function th"’_‘t IS seIQCted
(a) Long strings are subdivided into two substrings, with links madef©r decomposition is split into two subfunctions, with the
to existing node strings so as to avoid node duplicatibnOn-off ~ bréakpoint selected at rando(mn_lformly) anywhere in the
functions are removed to avoid excessive indirection: in this ex-String, as long as each subfunction has at least unit length. If
ample, function 10010 from patt) is removed, and its parent is €ither of the two subfunctions already exits., is a defined
linked directly to its two children (100 and 10). node in the call grapha link from the parent function to that

child subfunction is created. If a subfunction does not exist,

proves code evolvability by reorganizing its internal struc-a new node in the call graph is created, and the parent is
ture, | have implemented a simple model of an evolvinglinked to it. In this model, therefore, no duplication of code
software system, based on a few refactoring techniques. Thig allowed(respecting the proclamation of Beck and Fowler
model is overly simplified, insofar as its treatment of soft-that duplicated code is “Number one in the stink parade”
ware systems and practices is concerned, and can never rég4]). The final refactoring proceggemoving “excessive in-
licate the detailed structures of real software systems, whicHirection”) is carried out with probability + p. Specifically
are certainly history and project dependent. Neverthelessargeted are the nodes in the call graph that have only one
some coarse features of the observed software networks c@arent(i.e., are called by only one other functioand only
be replicated with the simple refactoring model, which pointstwo children; | will refer to such nodes as “one-off func-
the way toward more sophisticated models of this sort, asions.” One such node from the set of eligible nodes is cho-
well as further empirical study of actual software systemssen at random, and is removed from the system, such that its
undergoing refactoring. one parent node is linked directly to its two child nodes. This

In the model, binary strings of arbitrary lengtfie.,  specification is admittedly arbitrary, and could be further pa-
strings composed of 0's and }’'serve as proxies for the rametrized; but the general purpose of such a process is to
subroutines in call graphs and the classes in class collaboreemove functions that do not represent broadly useful ab-
tion graphs. No attempt is made here to distinguish betweestractions(i.e., are not used by many parent functions in
call graphs and class collaboration graphs, so | will generidifferent contexts and that do litle more than to simply
cally refer to these binary strings as “functions” or aggregate a small number of other functigns., two.
“strings,” and to the network of their interactions as a “call  In the version of the model studied to date, the evolution
graph.” Aggregation of functions is achieved through concat-process is begun by constructing a call graph consisting of
enation of stringgrepresented here via the addition opera-N, uniformly random binary strings, each of lendtl, with
tor). Therefore, a larger, more complex, string can be built umo function calls among them. One could think of this initial
from smaller, simpler strings: e.g., 0110110010010set as a group of long functions that are written explicitly in
=01101106- 10010=(01101+ 100)+ (100+ 10). Such a low-level code, with no subroutines defined to abstract sub-
concatenation also has a call-graph-based interpretation: thaits of the computations. As the refactoring process unfolds,
original parent node (0110110010010) has a link to each ofhese overly long functions are decomposed into sets of
the child nodes from which it is composed (01101100 andsmaller functions, with links developing in the call graph,
10010), as do the second-generation parent nodes to theind with smaller functions separated out for reuse by others.
children. One can think of the original parent nodefore Initially, the only active refactoring processes are long func-
decompositiopas a single long function which calls no other tion decomposition and reuse of existing functions, since
functions; after decomposition, the original function consiststhere are no one-off functions to be removed at first. Over
only of calls to the new child nodegObviously, such a time, however, one-off functions become available for re-
decomposition is not unique, but that is true of software sysmoval. Such a system will eventually reach an asymptotic
tems as wel). steady state where all possible refactorings have been carried

In this model, three refactoring processes are impleout, although the decomposition of strings with length
mented within the framework of a Monte Carlo simulation, <Il, can be very slow for small, nonzef In the present
as schematically represented in Fig.(Z) functions that are  work, | have stopped the refactoring process once the size of
excessively long tend to be decomposed into a set of smallehe call graph ceases to change for at least 10 000 consecu-
functions;(2) functions that already exist are used by otherstive refactoring steps.
rather than having duplicated versions of the same function Results from one such simulation are shown in Fig. 8,
within the system; an@) some functions that are deemed to which plots the in- and out-degree distributigpsirt(a)], the
support “excessive indirection” are removed, with appropri- in- vs out-degree correlatiofpart (b)], the relationship be-
ate rerouting of the call graph. More precisely, these protween nodal degree and string lendgpart (c)], and the
cesses are implemented as follows. With probabyijtg ran-  degree-dependent clusterifart (d)] for the refactored soft-
domly selected function in the call graph is decomposed intavare graph, in analogy with the results presented in Figs. 3,
two smaller subfunctions with probability given by(l) 4, and 5.
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4 o I T T T is similar to what was identified previously, as is supported
-3 "-.o'_"'-n“ ©:-0in by Figure &c), which plots nodal degree as a function of
< Tt &8 out string length for the resulting call graph. Large in-degree/
Z,2 small out-degrees represent small, simple functigstsort

stringg that can be and, in fact, are reused in many contexts
by many other larger functions; whereas large out-degree/
small in-degrees represent large, complex functions that ag-
gregate many smaller functions but which are themselves
used in few contexts. Finally, Fig.(@® reveals degree-
dependent clustering similar to that suggested by the hierar-
chical organization scenario and as seen in the data in Fig. 5,
although the source of the flattening 6{k) at largek is
unknown. As noted, the large out-degree tail in Fi¢p)8s
generated by one-off function removal. Were this process not
included, the out-degree for every function would be either 0
(b) 0 10 20 30 40 (not decomposeédor 2 (decomposed into two substrings
Alternative rules for decomposing large strings might pro-

w

out

1000 g— T — T T T duce heavy-tailed out-degree distributions even in the ab-
F 8 A sence of one-off function removal, but further work is
o 100F needed to explore in detail the behaviors of models inspired
> F by refactoring techniques. Those interested in the trade-offs
5 100 between indirection and computational performance might
E o o be motivated to construct a variant of this model whereby
© ‘1 s S '?”;'o e ----1-(-)0 i Io_ng string decompositions _incur a penalty_ cost_associated
string length with performance (_Jlegr_adanon; other studies might try to
quantify the suboptimality suggested by Valveeteal. [27]
0.1 E o o °°°°I o e——= which could be a;sociated with frustration of the sort seen in
C °M\ other complex, disordered systems.
< 001
© V. SOFTWARE SYSTEMS AND COMPLEX NETWORKS:
THE IMPLICATIONS OF OBJECT-ORIENTED
000t bl vl G DESIGN
(d) 1 10 100 1000

k A. Robustness, fault tolerance, and evolvability

FIG. 8. Simulation results for a model of software evolution by ~ R€searchers grappling to understand the structure, func-
refactoring:(a) in- and out-degree distributiong) scatter-plot of ~ tion and evolution of complex networks highlight robustness
in- vs out-degree(c) in- and out-degree vs string length, afd as an important theme in complex networks. Studies have
degree dependence of clusterif@(k) vs k, also showing thex 1 indicated[8,32] that one by-pl’OdUCt of scale-free networks in
dependence suggestive of hierarchical organization. Parameter valertain systems is enhanced robustness in the face of random
ues for the simulation werésee text for discussionNy=50L, node failure(although with increased fragility to failures of
=1000p=0.7),=4,T=1.0. The initial graph with 50 nodes and 0 highly connected nodg&sAnalyses that highlight the simi-
edges evolved into a graph with 3721 nodes and 14 335 edges. larities between biological systems and engineering systems

often emphasize redundancy in networks as a mechanism for

This simple refactoring model captures many of the safault tolerancg33]. Software systems, on the other hand, are
lient features of the observed systems. Figu@® 8emon- notoriously fragile, and at many scalés.g., single-point
strates heavy-tailed degree distributions similar to those imnutations at the level of a typographical error, inability to
the three class collaboration graphs shown in Figwgh  find a library needed for linking, cascading modifications
in-degree exponent/"~2 and out-degree exponent''  that follow from changes to a single clas®©f course, there
~3), although—as noted above—there is nothing specifiare specialized applications which absolutely require fault
cally in the model that distinguishes class collaborationtolerance or are capable of exploiting redundant resources in
graphs from call graphs. A detailed examination of the refacthe case of network disruptide.g., in distributed processing
toring process reveals that the heavy tail with large in-degreapplications.
is generated by the process of large function decomposition By and large, however, the complexity that lurks within
and associated reuse of existing functione code duplica- software systems is not responsible for implementing fault
tion). The tail with a large out-degree arises from the processolerance and robust control, as is the case for many complex
of one-off function removal. Figure(B) reveals an in-out engineering systems. Rather, much of the structural complex-
degree correlation similar to that seen in Fig. 4, with theity of large software systems—and in object-oriented sys-
large in-degree and the large out-degree separated from otems in particular—is to support evolvability. The need to
another. Furthermore, the significance of these large degreesntinually accommodate and incorporate changes in the ex-

046116-11



CHRISTOPHER R. MYERS PHYSICAL REVIEW B8, 046116 (2003

ternal environmentuser requirements, hardware platforms,  Curiously, Soleet al. [28] have commented that software
etc) lead to software designs that support modularity, decoueollaboration networks have “a certain degree [oédun-
pling, and encapsulatiofl2]. This connection between en- dancy] but no[degeneracly” Their assertion of redundancy
vironmental changes and adaptation toward modular networls based on the existence of duplicated code, but this con-
structure has been noted in several other contexts, such asfirses duplicated code with redundant code; duplicated code
models of biological evolutiorf34] and neural networks is not redundant unless it is embedded in the same computa-
[35]. In contrast, very little of the complexity inherent in tional context, in the same way that two identical resistors
complex engineering systeni83] is in place to support serving distinct roles in an electrical circuit are not redundant
evolvability and the construction of the next generation systo each other. They claim that there is no degeneracy in
tem (despite the fact that design elements do get réused software because “degeneracy is very comnfior natural
Much of the evolvability that is organized within software systens . . . buttotally unknown with the context of techno-
systems arises from carefully planned genericity and associegical evolution.” They further note that “degeneracy is in-
ated decoupling, using polymorphism and encapsulation ttmately associated with tinkering in evolution: it reflects the
negotiate the inherent trade-offs between specificity ande-use that is made of different parts of a system in order to
evolvability of interactions. While naive notions of object achieve similar functions.” | would argue that degeneracy is
orientation suggest the proliferation of increasingly deepn fact quite common in some software systems, largely in
class hierarchies that implement increasingly specialized olthe form of polymorphism, but perhaps through other mecha-
jects, the software engineering community has learned thatisms as well. Furthermore, generalizing from other techno-
systems based on those sorts of objects and interactions dogical systems to software systems is problematic, in part
often hard to modify{12]. Design patterns aim to organize because software is softer and more abstract than other en-
the interactions of objects in such a way as to ensure suffigineered systems. And software design does itself involve a
cient specificity for regulation and contralithout unduly  significant amount of evolutionary “tinkering,” which is be-
freezing a system intoommitments and constraintisat are ~ comingly increasingly recognized and formalized through
difficult to evolve. Viewed in this manner, design patterns areProcesses such as refactor{8d] and extreme programming
similar to biochemical processes such as regulated recruitd3l-
ment[36] that serve to ensure specificity through the coop-
erative action of several, more generic chemical constituents,C- Motifs, patterns, and emergent computational structures

rather than the specific action of a single, complex compo- There is growing interest in scanning large, emergent net-
nent. It may be that scale-free network topologies help tavorks to locate statistically significant, recurring motifs, and
mediate the trade-offs between specificity and evolvabilityultimately identifying the functional significance of those
and present a mechanism for minimizing constraint whilemotifs [39,40. Information processing systems—including
ensuring the specificity required for regulation and control. gene transcription networks, neuronal systems, and elec-
tronic circuits—are seen to make use of recurring motifs
B. Degeneracy and redundancy such as feed-forward loops and bifaf@d in some cases,

. _ ) .. . biparallel subgraphq40]. A preliminary examination of re-
The biological community has begun to make distinctionsgring motifs in the six software graphs studied here, using

between redundam_:y, in_volving the ability of identical ele_z-the motif finding algorithm of Alon and co-workeigi0],
ments to perform identical functions, and degeneracy, inidentifies these same motifs as being prevalent, but further
volving the ability of different elements to perform similar study is needed to examine their significance. It remains to
(or perhaps identicafunctions[37,38. This distinction em- e seen, however, whether such techniques will be able to
phasizes the role that degeneracy can play in evolvabilityidentify meaningful software motifge.g., design patterhin
whereas identical and redundant elements are unable to prall their glory, given the relatively crude representations of
vide any novel function in the face of changing environ- software networks presented here. The software reverse en-
ments, similar and degenerate elements offer avenues for agineering community is beginning to tackle the problem of
aptation because they offer the potential to provide differenextracting complex design patterns from existing software
behaviors in different contexts. Degeneracy in biological netsystems, but such work relies largely on detailadpriori
works is in fact similar to polymorphism in object-oriented specifications of the structure of those patterns and more de-
systems, in that different objects can substitute for one antailed class information than is contained in the graphs stud-
other to perform structurally similar functions which none- ied here[41]. An interesting challenge for the software engi-
theless differ in detail. This polymorphism imbues OO sys-neering community would be to develop systems and
tems with evolvability by enabling them to be more easilyalgorithms capable of extracting important patterns and mo-
adapted to changing needs and environments. Toaebal.  tifs from large software networks without such detailed prior
[37] have developed information-theoretic measures to quarinformation. Such an effort would not only be useful for
tify redundancy and degeneracy in neuronal networks, and goftware design and analysis, but might also help to guide
is an interesting open question as to whether connectiorthe field of complex networks in identifying functionally im-
between degeneracy and polymorphism might suggest novebrtant motifs.

ways of analyzing and interpreting software systems based One other interesting connection between software and
on similar sorts of measures. complex networks involves the very notion of “software en-
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gineering.” As software systems move increasingly into thebetween class collaboration graphs and call graphs presented
realm of the emergent and the unpredictable, a new notion dfere. Systems that have undergone large-scale refactoring
“software science” may unfold, emphasizing fundamentalcould be mined to ascertain whether real-world refactoring
phenomena to be explored, as opposed to cut and dried syBrocesses change the nature of software gréghthey have
tems to be built. An interesting question concerns the formaln my simple model systemand large open-source develop-
tion of structures akin to software design patterns. In thenent projects such as Linux and AbiWord that have made
same way that recurring spatial pattersrtices, disloca- transitions from the “cathedral” to the “bazaaf14] could
tions, fronts, and solitonscan arise in physical systems un- pe investigated for network-level signatures of such transi-

der stress, it may be that recurring functional pattéasgpt-  9ons- . _ .
ers, factories, mediators, and prosiezan arise in Combining insights from empirical studies of existing

appropriately defined computational systems driven far fronpyStems with those gleaned from more qbstracted models of
equilibrium. software systems—such as the refactoring model presented

here—should be more fruitful than either approach in isola-
tion. It would be interesting to learn whether emergent, au-
VI. SUMMARY AND CONCLUSIONS tomatically generated computational systems, such as those

In this paper, | have examined several aspects of softwardncovered by genetic programming techniql#3,44 or al-

collaboration networks, inspired by questions in complexdorithmic chemistrieg45], give rise to the sorts of topolo-

networks, software engineering, and systems biology. Nogies that are observed here. It remains to be seen, however,

unlike findings by others, the software collaboration net-Whether practical insights into the design and development

works studied all exhibit scale-free and/or heavy-tailed de®f Software can arise from the consideration of software sys-

gree distributions qualitatively similar to those observed int€MS s complex networks, more broadly construed.
recently studied biological and technological networks. An  SOftware systems present novel perspectives to the study
examination of these software systems reveals that the hieff cOmplex networks. Software is designed to be both func-

archical nature of software design has an impact on the ovefional and evolvable, and those dual needs suggest particular
all network topology. Simpler, more generic classes and su

gorms of network organization. Whereas other complex net-
routines form the heavy tail of the in-degree distribution, andV/Orks €émphasize redundancy to support fault tolerance, soft-
complex, more specialized aggregates populate the heavy t3fi2re networks highlight other degrees of freedom that play a
of the out-degree distribution, with the two generally well €ntral role in supporting evolvability, such as genericity,

separated from one another. While the process of aggregatid@®!ymorphism, encapsulation, and collaboration. If those de-
facilitates the coregulation of many constituent elementsd"€es of freedom are relevant to the organization and evolu-

such control is also constraining and more difficult to evolve {ion of biochemical networks, software systems may be use-

Design patterns, polymorphism, refactoring, and relatedy! in_ suggesting novel insights into collective biological
techniques aim to minimize specificity of interactions while function.
still enabling specific control, and it may be that the scale-
free nature of software collaboration networks reflects these ACKNOWLEDGMENTS
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erated by Doxygei46], an automatic document generation degrees, although they do contribute to the source file sizes
tool that parses+ + header files to describe classes, theirof their parent classe@troducing some error to those sizes
methods, inheritance, and collaborations. Doxygen generatdthe computed source code file size for each class is the sum
a set of files describing collaboration graphs in the “dot” of the total number of lines of codecluding comments and
format[47], and Doxygen’s definition of collaboration to in- plank lines in the two source files. The number of methods
clude inheritance plus association was used for this particuladefined for each class are derived by combining Doxygen
study. Each class collaboration graph is generated indepefxformation on class methods and the embedded inheritance
_dently of all others, so all the subgraphs must be assemb_leéiraph defined for each system. Doxygen documents only
into a global collaboration graph. Some minor typographiciy,;se methods defined within a class, which does not include
changes to class names were required to enable programs g qs inherited from base classes. The inheritance graph
the GRAPHVIZ package to process the resulting graph files. is thus traced to add to this list of methods defined for each

The call graphgLinux, MySQL, XMMS) were available . . . .
for download on the Web as demonstration data associate(aaSS those public methods defined by its base classes. Fi

with the copeviz package, developed by Mel Gormp4s]. nally, because VTK has been developed within the frame-

CODEVIZ includes patches to the gcc compiler that enable thg\’Ork of the CVS source code revision system, information is

extraction of static call graphs of functions and macros. Asgvailable describing the revision history of every source file

such,copeviz does not include calls through function point- " the system(and hence, for each class in the system, be-
ers, nor does it capture inline functions or naming collisionsc@use of the strict mapping of classes to two source)files
between functions with the same name in multiple files. ~ This CVS revision information is available on the Wet9],
Connected component analysis was done using thwhich can be crawled and parsed. Any change to either the
ccomps and sccmap tools in tbeaPHviz packagd47], for header or implementation file of a class resulting in a new
weak and strong connected component analyses, respe@VS version number for either of those files was counted as
tively. As noted, subsequent analyses were carried out on tie revision to the class; this, therefore, counts twice any
single, dominant weak connected component found in eacbhange to a method signature that would necessitate an up-
system. Graph data and associated information are availabtiate to both the header and implementation files, leading to
online [50]. an overestimation of rates, which may or may not be offset
The various class metrics for the VTK system presentedy the fact that multiple source revisions could be swept
in Sec. Il E were extracted as follows. Almost every class inunder a single update to the CVS system. From these data,
VTK is declared and defined in two separate source filegounts of the total number of revisions of each class were
(header.h and implementationcpp) whose names corre- generated, and divided by that class’s total lifetime in the
spond to the associated class. Two exceptions are inn&@VS repository, to arrive at an average revision rate since
classes(which are defined within their parent source files,inception (expressed as average number of revisions per
but which are identified by Doxygen as unique clagsasd yeap. Classes that had been in the CVS repository for less
templated classe@vhich in principle can produce multiple than 3 million secondgroughly 35 days were excluded
classes emanating from a single pair of source)fil@gey from the analysis, since their short lifetime tended to intro-
are excluded from the analysis relating class metrics to graptluce large errors in the calculation of their revision rates.
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