
Object Oriented Programming 1

Java Classes
&

Object Oriented Programming

Introduction

Object Oriented Programming 2

Object Oriented Programming
•  One of the first applications of modern

computing was modeling and simulation.
•  Scientists soon realized that functions alone

were insufficient to model systems
intuitively

•  If we are going to model a planet we would
like to actually create a virtual planet, define
how it behaves in our simulated universe,
and then just observe it.

Object Oriented Programming 3

Object Oriented Programming
•  Programmers quickly realized that the idea of

creating virtual “things” made software
engineering simpler to think about.

•  If we create within our programs agents and
objects then we can assign duties and tasks to
them.

•  This is really just another way applying
decomposition to our software.

•  Break up the problem to be solved into logical
parts and assign each part to an object.

Object Oriented Programming 4

Object Oriented Programming
•  Even engineers are social animals - we

evolved to think about the world in terms of
agents and objects (not recursion).

•  In many situations we solve large problems
by delegation. That is we have workers who
specialize in solving a particular problem.

•  Those specialists have specific skills that
they can apply to a specific class of
problems.

Object Oriented Programming 5

Object Oriented Programming
•  We can pattern software after a group of

specialists at a company working on a
problem.

•  For example, there are two objects we have
used – System.out and System.in.

• System.in is the name of an object who
knows all about reading data from the
keyboard and putting it into a variable.

•  It is easier to ask System.out to do the
work than write a program to do it ourselves.

Object Oriented Programming 6

Object Oriented Programming
•  Important: we don’t have to have any idea

how System.out does its job. We just trust
that it does.

•  Just like we don’t question the US Mail
about how our letter gets from here to
Seattle.

•  We only care that it arrives within certain
tolerances – not how it got there.

•  This is called abstraction, information-
hiding, and encapsulation and we like it!

Object Oriented Programming 7

Object Oriented Programming
•  When we mail a letter all we have to worry

about is following the correct protocol to
ensure our letter gets to the right place.

•  We have to know where to go, how to pay, the
format expected for the destination address and
return address, etc.

•  In software this protocol is called the interface.
•  All objects have to have an interface that

clearly defines how we can interact with the
object.

Object Oriented Programming 8

Object Oriented Programming
•  Almost any problem can be broken up

into objects.
• Objects are defined by three things:

– Their state – this is the information
they contain.

– Their behavior or capabilities – these
are the functions they have access to.

– Their interface – the rules describing
how they interact with other objects in
the system.

Object Oriented Programming 9

Object Oriented Programming

•  Programmer thinks about and defines the
attributes and behavior of objects.

•  Often the objects are modeled after real-
world entities.

•  Very different approach than function-based
programming (like C, C++, Fortran,
Lisp,...).

Object Oriented Programming 10

Reasons for OOP

Abstraction
Encapsulation

Information hiding
Inheritance

Software Engineering Issues

Object Oriented Programming 11

Class: Object Types
•  Java uses classes and structures to

define objects
•  A Java class is an object type.
•  When you create the definition of a

class you are defining the attributes and
behavior of a new type.
– Attributes are data members.
– Behavior is defined by methods.

Object Oriented Programming 12

Creating an object
•  The interface acts as a contract specifying how the

object will behave – as long as the code fulfills the
contract we don’t care how it works.

•  Defining a class does not result in creation of an
object.

•  Declaring a variable of a class type creates an
object. You can have many variables of the same
type (class).

This is called instantiation of the class, i.e. we create

an instance of the object.

Object Oriented Programming 13

Information Hiding
•  The interface to a class is the list of public

data members and methods.
•  The interface defines the behavior of the

class to the outside world (to other classes
and functions that may access variables of
your class type).

•  The implementation (the code that makes
the class work) doesn't matter outside the
class.

Object Oriented Programming 14

Information Hiding (cont.)
•  This is good because it allows us to change

the underlying code without forcing
everyone who uses our objects to change
their code.

•  You can change the implementation and
nobody cares! (as long as the interface is the
same).

Object Oriented Programming 15

Private vs. Public
•  Classes define certain parts of the object to

be public, private, or protected.
•  Public parts of the object can be used by

anyone who has access to the object.
•  The private parts of the object are for the

objects internal use only.
•  Protected parts are accessible from outside

the object only under certain circumstances.
•  Try to make as much private as possible.

Object Oriented Programming 16

Special Member Functions
•  Constructors: called when a new object

is created (instantiated).
– can be many constructors, each can take

different arguments
•  Garbage Collection. This is why Java is

so popular.

Object Oriented Programming 17

Anatomy of a Class
 public class Dog

{
 Dog(String dog_name){
 name = dog_name;

 }
 public void bark(){
 System.out.println(“woof”);
 }
 public string getName() { return name }

 private String name;
}

Put all this in D
og.java

Object Oriented Programming 18

public static void main(String[] args){
 String my_dogs_name = “Fido”;

 // Create object of type “Dog”
 Dog mydog = new Dog(my_dogs_name);

 // Access data and call methods in “mydog”
 System.out.println(
 mydog.getName()
 + “: ”
 + mydog.bark());
 return 0;

}

Using a Class and an Obeject

Object Oriented Programming 19

Accessing Data Members

•  Data members are available within each
method (as if they were local variables).

•  Public data members can be accessed by
other functions using the member access
operator ".".

Object Oriented Programming 20

Accessing class methods

•  Within other class methods, a method can
be called just like a function.

•  Outside the class, public methods can be
called only when referencing an object of
the class.

Object Oriented Programming 21

Classes and Files
Each class definition goes in it’s own .java
file.

Give the file the same name as the class.

Java can automatically find the class
definition this way.

Object Oriented Programming 22

Classes and Objects
•  It is essential to understand the
difference between a class and the
corresponding object.

•  A class defines the properties of the
object (methods, data members, name).

•  When you use the “new” keyword you
instantiate the class.

•  This means you tell java to reserve
some memory in the computer to store
data required by the class.

Creating Objects

Object Oriented Programming 23

Class:
Name: Dog

Data Member:
String name

Methods:
String getName(),
void bark()

Dog pet1 = new Dog(“Fido”)
Object:
Name is “Fido”

Dog petA = new Dog(“Rover”)
Object:
Name is “Rover”

Dog dog1 = new Dog(“Hick”)
Object:
Name is “Hick”

Class Definition:
“Dog.java”

Code to create object Object

•  Imagine when you are writing a class that it
is a blueprint.

•  Instantiating a class is building the object
described by the blueprint.

Object Oriented Programming 24

