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Java Classes  
& 
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Object Oriented Programming 
•  One of the first applications of modern 

computing was modeling and simulation. 
•  Scientists soon realized that functions alone 

were insufficient to model systems 
intuitively 

•  If we are going to model a planet we would 
like to actually create a virtual planet, define 
how it behaves in our simulated universe, 
and then just observe it. 
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Object Oriented Programming 
•  Programmers quickly realized that the idea of 

creating virtual “things” made software 
engineering simpler to think about. 

•  If we create within our programs agents and 
objects then we can assign duties and tasks to 
them. 

•  This is really just another way applying 
decomposition to our software. 

•  Break up the problem to be solved into logical 
parts and assign each part to an object. 
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Object Oriented Programming 
•  Even engineers are social animals - we 

evolved to think about the world in terms of 
agents and objects (not recursion). 

•  In many situations we solve large problems 
by delegation. That is we have workers who 
specialize in solving a particular problem. 

•  Those specialists have specific skills that 
they can apply to a specific class of 
problems.  
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Object Oriented Programming 
•  We can pattern software after a group of 

specialists at a company working on a 
problem. 

•  For example, there are two objects we have 
used – System.out and System.in. 

• System.in is the name of an object who 
knows all about reading data from the 
keyboard and putting it into a variable. 

•  It is easier to ask System.out to do the 
work than write a program to do it ourselves. 
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Object Oriented Programming 
•  Important: we don’t have to have any idea 

how System.out does its job. We just trust 
that it does. 

•  Just like we don’t question the US Mail 
about how our letter gets from here to 
Seattle.  

•  We only care that it arrives within certain 
tolerances – not how it got there. 

•  This is called abstraction, information- 
hiding, and encapsulation and we like it! 
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Object Oriented Programming 
•  When we mail a letter all we have to worry 

about is following the correct protocol to 
ensure our letter gets to the right place. 

•  We have to know where to go, how to pay, the 
format expected for the destination address and 
return address, etc. 

•  In software this protocol is called the interface. 
•  All objects have to have an interface that 

clearly defines how we can interact with the 
object. 
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Object Oriented Programming 
•  Almost any problem can be broken up 

into objects. 
• Objects are defined by three things: 

– Their state – this is the information 
they contain. 

– Their behavior or capabilities – these 
are the functions they have access to. 

– Their interface – the rules describing 
how they interact with other objects in 
the system. 
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Object Oriented Programming 

•  Programmer thinks about and defines the 
attributes and behavior of objects. 

•  Often the objects are modeled after real-
world entities. 

•  Very different approach than function-based 
programming (like C, C++, Fortran, 
Lisp,...). 
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Reasons for OOP 

Abstraction 
Encapsulation 

Information hiding 
Inheritance  

 
Software Engineering Issues 
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Class: Object Types 
•  Java uses classes and structures to 

define objects 
•  A Java class is an object type.  
•  When you create the definition of a 

class you are defining the attributes and 
behavior of a new type. 
– Attributes are data members. 
– Behavior is defined by methods. 
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Creating an object 
•  The interface acts as a contract specifying how the 

object will behave – as long as the code fulfills the 
contract we don’t care how it works. 

•  Defining a class does not result in creation of an 
object. 

•  Declaring a variable of a class type creates an 
object. You can have many variables of the same 
type (class). 

 
This is called instantiation of the class, i.e. we create 

an instance of the object. 
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Information Hiding 
•  The interface to a class is the list of public 

data members and methods. 
•  The interface defines the behavior of the 

class to the outside world (to other classes 
and functions that may access variables of 
your class type). 

•  The implementation (the code that makes 
the class work) doesn't matter outside the 
class. 
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Information Hiding (cont.) 
•  This is good because it allows us to change 

the underlying code without forcing 
everyone who uses our objects to change 
their code. 

•  You can change the implementation and 
nobody cares! (as long as the interface is the 
same). 
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Private vs. Public 
•  Classes define certain parts of the object to 

be public, private, or protected. 
•  Public parts of the object can be used by 

anyone who has access to the object. 
•  The private parts of the object are for the 

objects internal use only. 
•   Protected parts are accessible from outside 

the object only under certain circumstances. 
•  Try to make as much private as possible. 
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Special Member Functions 
•  Constructors: called when a new object 

is created (instantiated). 
– can be many constructors, each can take 

different arguments 
•  Garbage Collection. This is why Java is 

so popular. 
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Anatomy of a Class 
 public class Dog 

{ 
   Dog( String dog_name ){ 
      name = dog_name; 

      } 
   public void bark(){ 
  System.out.println(“woof”); 
   } 
 public string getName() { return name } 

    private String name; 
} 

 

Put all this in D
og.java 
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public static void main(String[] args){ 
 String my_dogs_name = “Fido”; 

 
 // Create object of type “Dog” 
 Dog mydog = new Dog( my_dogs_name ); 

    // Access data and call methods in “mydog” 
 System.out.println(  
   mydog.getName()  
   + “: ”  
   + mydog.bark() ); 
 return 0; 

} 
  
  

Using a Class and an Obeject 
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Accessing Data Members 

•  Data members are available within each 
method (as if they were local variables). 

•  Public data members can be accessed by 
other functions using the member access 
operator ".".  
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Accessing class methods 

•  Within other class methods, a method can 
be called just like a function. 

•  Outside the class, public methods can be 
called only when referencing an object of 
the class. 
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Classes and Files 
Each class definition goes in it’s own .java 
file. 
 
Give the file the same name as the class.  
 
Java can automatically find the class 
definition this way. 
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Classes and Objects 
•  It is essential to understand the 
difference between a class and the 
corresponding object. 

•  A class defines the properties of the 
object (methods, data members, name). 

•  When you use the “new” keyword you 
instantiate the class. 

•  This means you tell java to reserve 
some memory in the computer to store 
data required by the class. 



Creating Objects 
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Class: 
Name: Dog 
 
Data Member:  
String name 
 
Methods:  
String getName(), 
void bark() 

Dog pet1 = new Dog(“Fido”) 
Object: 
Name is “Fido” 

Dog petA = new Dog(“Rover”) 
Object: 
Name is “Rover” 

Dog dog1 = new Dog(“Hick”) 
Object: 
Name is “Hick” 

Class Definition: 
“Dog.java” 

Code to create object Object 



•  Imagine when you are writing a class that it 
is a blueprint. 

•  Instantiating a class is building the object 
described by the blueprint. 
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