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Receptor aggregation by intermembrane interactions: A Monte Carlo study
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Abstract

The lateral organization of receptors on cell surfaces is critically important to their function; many receptors transmit transmembrane signals

when redistributed into clusters, while the response of others is potentiated by their aggregation. Cell–cell contact can play a crucial role in

receptor aggregation, even when the bonds between receptors on one cell and ligands on the other are monovalent. Monte Carlo simulations on a

two-membrane model were carried out to determine whether weak enthalpic interactions among receptors in one membrane, and among ligands in

another, can work synergistically to give large-scale clustering when the two membranes are brought into contact. The simulations give support to

such a clustering mechanism. In addition, because clustering is a cooperative process akin to a phase separation, individual receptors and ligands

may undergo repeated binding and unbinding while in a clustered ‘‘phase,’’ and a single ligand could interact with multiple different receptor

partners. The results suggest a resolution of the dichotomy between serial triggering and aggregation models of T cell activation.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Ligand-induced receptor clustering is a transmembrane

signaling mechanism that is ubiquitous in cell biology. In the

prototypical cases (e.g. IgE receptors and other immune

receptors), the cytoplasmic tails of the receptors contain

enzymatic domains with tyrosine kinase activity, and other

enzymatic domains that are activated by tyrosine phosphor-

ylation. In the isolated receptor, the kinase is sterically unable

to autophosphorylate the receptor; the clustering of receptors

results in transphosphorylation and thus receptor activation

[1–3].

Receptor aggregation now appears to be critical not only for

those receptors that are directly activated by transphosphoryla-

tion, but also for G-protein coupled receptors (GPCR), which

have generally been considered to be monomeric. Significant

evidence has accumulated that these receptors form clusters or

oligomers in the membrane. The formation of these oligomers
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may be a mechanism for cooperativity in ligand binding and

receptor activation, providing a more nonlinear response (better

Fswitching power_) in the GPCR system [4,5].

Because of the great biological significance of receptor

clustering, many different theoretical studies have been

undertaken to elucidate various mechanisms that can, in

principle, give rise to such non-uniform receptor distributions.

In the simplest situation, receptors and ligands are multivalent,

allowing direct physical (non-covalent) cross-linking to drive

receptor redistribution. This is the case with the immunoglob-

ulin E receptors (IgE-R), for example. Even in this Fsimple_
case, the actual distributions of aggregate sizes, and their

kinetics of formation, are complicated and have been the

subject of a number of theoretical and experimental studies [6–

8]. These analyses are especially important when one considers

the fact that the steric constraints on IgE-R transphosphoryla-

tion seem to prevent some dimerized receptors from signaling

at all [9]; thus, higher-order aggregates are essential to effective

signaling.

Regardless of the stoichiometric and kinetic complexity in

IgE receptor cross-linking, the mechanism of clustering, at

any rate, is straightforward. In other instances, the origin of

the physical forces causing receptor aggregation is less clear.
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Of particular importance is the dramatic redistribution of cell

surface receptors on T cells, when they are brought into

contact with an antigen-presenting bilayer or cell [10]. In this

and other cases, the physical mechanism for aggregation has

not yet been definitively established. A number of interesting

proposals have been put forth regarding high order clustering.

For example, it has been suggested that transient dimerization

can lead to larger-scale aggregation through a rapid partner-

switching mechanism, and Monte Carlo simulations support

that concept [11]. An alternative explanation involves

membrane fluctuations. When target ligands are membrane-

bound, there should be entropic benefits to aggregation of

liganded receptors. Each ligand-receptor bond pins the

membranes together and reduces the overall entropy of the

system. Aggregating the pinning points reduces the receptor

entropy, but increases the entropy of much of the membrane,

which is now free to undergo thermally driven spatial

fluctuations [12–14]. Such a view is supported by experi-

ments conducted more than two decades ago showing that

IgE receptors will aggregate when monovalently bound to

laterally mobile ligands in a supported lipid bilayer [15].

Similar effects have been observed in Monte Carlo simulation

of stiff membrane inclusions, which can entropically phase

separate [16].

We consider here an alternative, simple enthalpic mecha-

nism for the aggregation of receptors (such as T cell receptors)

by monovalent ligands presented on a companion cell

membrane. The mechanism is based on the fact that aggrega-

tion is highly non-linearly dependent on intermolecular

interaction strength: below a threshold interaction energy, the

distribution of membrane proteins or receptors will appear to

be quite random, while above the threshold, large-scale

aggregation occurs as a two-dimensional phase separation. If

weak attractive interactions exist among receptors on one

membrane, and among ligands on the other, the receptor-ligand

binding might then ‘‘sum’’ those interactions to give large

ligand-receptor clusters. This study confirms this expectation,

and provides an indication of what interaction strengths would

be necessary for the mechanism to be effective. These enthalpic

contributions, perhaps acting in concert with various kinetic or

entropic mechanisms, could cause dramatic switching from a

dispersed to an aggregated receptor distribution. The inherent

non-linearity of the physical process of phase separation can

thus provide a powerful switching mechanism in biological

systems.

2. Methods

Cell membranes were modeled using a square lattice of n

sites (n =104, typically) with periodic boundary conditions.

Each site on the lattice represented a possible protein

location, and each protein’s Fsize_ was one lattice site. At

each time step of the algorithm, n randomly chosen sites in

the lattice were selected for possible update. If the selected

site, s0, contained a protein, then an attempt was made to

move the protein to a randomly chosen adjacent (non-

diagonal) site. In accord with the Metropolis Monte Carlo
algorithm, the move was automatically accepted if it resulted

in a decreased energy for the system, and was accepted with

a probability of

P ¼ e�DE=kBT ð1Þ

if the move increased the energy by DE. (kB=Boltzmann

constant, T=absolute temperature). If the target site was already

occupied, then no move was made. The energy of the system

was taken to be proportional to the number of protein–protein

(non-diagonal) contacts in each state; thus, the change in

energy is

DE ¼ � ekBT Npp;s1 � Npp;s0

� �
ð2Þ

where Npp,s is the number of contacts when the protein is at site

s, and e is a dimensionless energy.

Intermembrane interactions were modeled by placing two

membranes together to form a 2-ply space. Proteins were

placed on both membranes. Proteins were restricted to one

membrane in their motions, but the energy of the system was

lowered when proteins in the two membranes Foverlapped_, i.e.
when two proteins share the same lattice site coordinates within

their respective membranes. An additional dimensionless

energy parameter, ex is used to characterize the favorability

of intermembrane contact.

It is important to recognize that Monte Carlo simulations of

this sort are neither capable of nor intended for representing the

dynamics of membrane protein systems. To properly represent

dynamics, all the physical mechanisms that can result in

changes in microstate must be included, and must be properly

weighted with appropriate activation energies and attempt

frequencies [17]. The ‘‘moves’’ in our Monte Carlo algorithm

may superficially mimic protein diffusion, but could just as

easily (and correctly) have been chosen to be non-local

exchanges with no physical interpretation. It is important that

the moves in the algorithm satisfy the Fdetailed balance_ for the
transition probabilities,

Pi!j

Pj!i

¼ exp � DEij=kBT
� �

ð3Þ

which is guaranteed by the Metropolis rule [18,19]. The Monte

Carlo moves merely ensure that the configuration space is fully

sampled, and that configurations with lower energy are

appropriately weighted by the Boltzmann factor. The steady-

state macroscopic properties of the Monte Carlo ensemble then

correspond to the thermodynamic equilibrium state of the

system.

Each experiment consisted of 15,000 iterations on a

100�100 lattice with periodic boundary conditions. During

each iteration, 10,000 randomly chosen sites were updated.

Random site selection prevented artifacts that could have been

caused by update precedence. 15,000 iterations were generally

found to be sufficient for the system to reach a steady state;

cases where steady state was not reached are noted below. In

some experiments, the aggregation fractions or cluster numbers

for identical runs were averaged together to reduce statistical

noise, which can be large at small protein densities.



Fig. 1. The correlation length of protein distribution as a function of the protein

interaction energy, for a density of 0.1 protein per lattice site. A typical

correlation function, g (r), is shown in the inset, for an interaction energy

e =0.94. The correlation function is well fit by an exponential decay; the

characteristic decay length is n, which is plotted as a function of the interaction

energy in the main graph. The correlation length increases as |n�nc|
�1, shown

as the fitting curve. In finite simulations, the correlation length cannot diverge,

but begins to saturate when the interaction energy is close to the phase

separation point; points near phase separation were excluded from the fit.
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3. Results

A number of simple MC simulations were first conducted,

in order to verify that thermodynamically expected behavior is

reproduced in a simple system. In the first simulation, proteins

were allowed to diffuse on a square lattice, in the presence of

attractive protein–protein interactions. These interactions are

modeled by the addition of a free energy term that favors

protein–protein contacts. As discussed in Methods, protein–

protein contact was interpreted as occupancy of adjacent, but

not diagonal, sites on the lattice. When the interaction energy is

highly favorable, the system will phase separate, giving rise to

large (infinite, in the thermodynamic limit) protein clusters.

The phase separation of such a lattice gas has been extensively

studied. The phase behavior can be most clearly seen by

starting from a fully clustered initial state, and running the

Monte Carlo simulation to determine whether dissociation

occurs; above a critical interaction energy, the phase separated

state persists indefinitely.

When the initial state is unclustered, the computer time (i.e.

Monte Carlo iterations) required to reach a fully phase

separated state can be prohibitive. The reason for this is

kinetic, not thermodynamic: the algorithm does not provide

any mechanism for the collective motion of small aggregates,

and thus the coalescence of small aggregates is remarkably

slow. (It is difficult to incorporate aggregate motion without

biasing the simulation toward aggregation. To prevent bias, for

any MC step or action incorporated into the model, the time-

reversed step must also be allowed. Collective cluster motion

allows for cluster fusion by contact; therefore, cluster

fragmentation would also need to be included). This unrealis-

tically slow kinetic behavior illustrates the well-known fact

that, as noted above, Monte Carlo simulations give correct

equilibrium behavior but, in the absence of a complete set of

realistic transition probabilities, do not give correct kinetic

behavior.

This study is concerned with equilibrium, rather than

kinetics. Correct equilibrium states will be achieved (eventu-

ally) provided the transitions between states allow a sampling

of all microstates, and that the transitions occur bi-directionally

with probabilities proportional to the Monte Carlo–Boltzmann

factor when energy increases, and to unity when energy

decreases.

Fig. 1 shows the phase behavior the single membrane

model, at a density of 0.10 proteins per lattice site. Starting

from a fully phase separated protein distribution, the simulation

was run until equilibrium was reached. The spatial distribution

of the proteins in the resulting lattice was characterized by the

protein–protein correlation function, which was then fit to an

exponential decay.

The results are consistent with well-established lattice gas

simulations [20]. As the interprotein attractive interaction

(energy e, in units of kBT) increases, the correlation length

increases as

n”
1

ec � e
ð4Þ
where ec is the critical interaction energy at the onset of phase

separation. In any finite model, the correlation length cannot

diverge, but reaches a plateau dictated by the system size. The

result for the 100�100 lattice is shown in the figure. The

deviations caused by the finite system are apparent at the upper

right portion of the graph.

3.1. Intramembrane aggregation

Below the critical interaction energy, the system does not

phase separate, but proteins are clearly non-randomly distrib-

uted. At very low interaction energies and protein densities, it

is reasonable to expect that the number of free, monomeric

(non-clustered) proteins will obey a law of mass action:

K ¼ d½ �
m½ �2

ð5Þ

based on an association reaction m +mYd in which two

monomers bind to form a dimer. To reach this limit, it is

important that trimers, tetramers, and higher order aggregates

be present only at very low concentrations.

Fig. 2 shows that the model behavior does reproduce this

expected result. The equilibrium fraction of clustered proteins

is plotted as a function of protein density, for several subcritical

values of the interaction energy. In the absence of any

interaction energy, the probability of a protein having a near

neighbor is

Pnn ¼ 1� 1� qð Þ4 ð6Þ
where q is the density of proteins (expressed as the fraction of

filled sites). The experimental data were therefore fit to a sum



Fig. 3. Fraction of proteins in intermembrane dimers as a function of protein

density in both membranes. At zero interaction energy, the fraction of dimers is

the same as the protein density, as expected for random associations. The dimer

concentration can be well fit by the sum of the background association, plus a

mass action term. The dimerization constant for the mass action term is well fit

to an exponential in binding energy, inset.

Fig. 2. Fraction of proteins in clusters (dimers or higher aggregates), as a

function of protein density, for various attractive interaction energies. The

clustered fraction was fit to a background level of statistical aggregation, plus a

mass action term (a dimerization equilibrium). The dimerization constant K is

plotted in the inset versus the binding energy, and shows the expected

exponential dependence. Exact correspondence is not expected, because higher

order aggregation is possible. Data from 100�100 lattice run for 10,000

iterations.
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of this ‘‘background’’ level of aggregation, plus a mass action

term applied to the remaining proteins. The fit is quite good, as

can be seen in the figure. Some discrepancy is to be expected,

since the aggregation reaction is not limited to dimer formation.

3.2. Intermembrane dimerization

When two membranes are apposed, it is necessary to

specify two distinct interaction energies: the intramembrane

interaction and an energy of interaction between proteins in

different membranes. To further check our model results, a

number of simulations were run in which the intramembrane

protein binding energy was zero, while the intermembrane

protein binding energy was varied, Fig. 3. As expected, there

is no phase separation behavior in this case: since the

interaction can only lead to the formation of intermembrane

dimers, no cooperative phenomena occur. As shown in the

figure, the fraction of protein dimers is well fit by a law of

mass action, if an additional term for random dimers is

included. (Even without any interaction energy, a protein in

one membrane will sometimes be directly across from a

protein in the apposed membrane. The probability for this

occurrence is equal to the protein density, expressed as the

fraction of occupied sites).

Although an intermembrane interaction, by itself, cannot

cause large-scale protein aggregation or phase separation, it is

reasonable to hypothesize that intermembrane interactions

could potentiate the effects of weak, intramembrane protein

attractions. The conditions under which such large scale

aggregation can occur is the principal subject of this study.

Although correlation length is the most commonly used

parameter in quantifying the approach to phase separation, it
poses special difficulties in finite-size computer models. As

seen in Fig. 1, the correlation length cannot diverge in a finite

system. (Rigorously speaking, of course, finite systems

cannot undergo phase changes). As the interaction energy

approaches a value that would give phase separation in an

infinite system, the correlation function for the finite system

begins to deviate from the theoretical functional form, and

thus even the notion of ‘‘correlation length’’ becomes

ambiguous. To circumvent these difficulties, we have chosen

to use a metric for protein aggregation based on the average

size of protein clusters, similar to the approach taken by

Woolf and Linderman [11]. In the phase separated state, there

will be only one (infinite) cluster, while in a highly random

state, the number of clusters will be nearly the same as the

number of proteins. The reciprocal of the number of clusters,

1 /NC thus varies between ¨0 for a homogeneous protein

distribution, to 1 for a fully ‘‘phase separated’’ system. This

metric has the advantage that it emphasizes the large-scale

aggregation, while being little affected by formation of

transient dimers or trimers. The disadvantage is that 1 /NC

can fluctuate wildly when NC is small. This can be readily

overcome by simply taking an ensemble average over many

Monte Carlo runs, however.

That intermembrane interaction can potentiate large-scale

protein clustering is readily seen, as shown in Fig. 4. Shown in

Fig. 4a is the protein distribution in a membrane with an

intramembrane protein interaction energy of 0.6 kBT, well

below the energy needed to cause large-scale clustering (¨2.0

kBT, at this protein density). Although the number of transient

small clusters (mainly dimers and trimers) is slightly higher

than with no interaction, the protein distribution in this

membrane is largely homogeneous. When two such mem-

branes are apposed, and an intermembrane protein interaction

energy of 5.0 kBT is included, the equilibrium distribution

becomes highly clustered, as shown in Fig. 4b.



Fig. 4. (a) left: 100�100 double lattice at step 6500 with a protein concentration of 0.05 on each lattice. Intra-lattice protein interaction energy is 0.6 kBT and the

intermembrane interaction energy is zero. At this interaction energy, large clusters are never observed. (b) right: The same lattice configuration as in (a) but with an

added intermembrane interaction energy of 5.0 kBT. Note the formation of large clusters as a consequence of the added intermembrane interaction.
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A complete map of the two-membrane aggregation behavior

is shown in Fig. 5, in which the aggregation metric, 1 /NC, is

plotted versus the intramembrane protein interaction energy (e,
in kBT) and the intermembrane protein interaction (ex). The
Fig. 5. The reciprocal of the mean number of clusters (per membrane) in the

two-membrane model, as a function of the intra- and intermembrane protein

interaction energies. Each of the two 100�100 square lattices hosted 500

proteins, a density of 0.05. (Bottom) a 3D plot; (Top) same data, viewed from

above. Color coding helps to identify the range of parameters that give strong

clustering: blue and purple colors correspond to fewer than 2 clusters per

membrane in the ensemble. The model was run for 15,000 iterations. To reduce

the statistical variation, 1 /NC was averaged over 5 runs.
blue regions of the plotted surface indicate the largest

clustering; the red regions the least. As might be expected,

for very strong intermembrane interactions, the threshold

intramembrane protein interaction energy for large-scale

aggregation is reduced by about half. (This suggests that the

entropic opposition to aggregation is not significantly larger in

the eightfold-coordinated lattice than in the fourfold-coordi-

nated lattice). Somewhat surprisingly, even for rather weak

intermembrane interactions (i.e. ¨4 kBT per protein pair), there

is still a strong tendency toward aggregation.

The quasi-exponential dependence on the cross-membrane

protein interaction energy suggests that a temporally averaged

or ‘‘mean field’’ approach might be used to predict the

behavior in these systems. We can consider the effective

interprotein interaction to be the time-weighted average of e
(when the protein has no partner in the apposing membrane)

and 2e (when it is partnered; for a symmetric system). The

ratio of the fraction of time when it is unpartnered to the
2.0
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Fig. 6. The strengths of the intra-(e) and intermembrane (ex) protein interaction

energies (in kBT) required to give an effective interprotein interaction of 2 kBT,

according to a simple ‘‘mean field’’ estimate. 2 kBT is the threshold for receptor

aggregation at this concentration (5%). The line should be compared with the

boundary between aggregated (blue) and dispersed (red) protein phases in Fig.

5, Top.
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fraction of time when is it partnered is proportional to the

Boltzmann factor,

tu

tp
¼ 1� c

c
e�ex ð7Þ

where c is the concentration of partners (expressed as a

fraction of occupied sites). The effective interprotein interac-

tion for the symmetric system is then:

eeff ¼
etu þ 2etp
tu þ tp

¼ 1� cð Þe�ex þ 2c

1� cð Þe�ex þ c
e

Fig. 6 shows the locus of points for which the eeff is 2, for
comparison with the Monte Carlo data of Fig. 5. Though the

qualitative agreement is good, the ‘‘mean field’’ calculation

somewhat overestimates the effectiveness of the intermem-

brane protein interaction in driving aggregation. At 4 kBT, the

interactions in the separate membranes have essentially

complete additivity, while the Monte Carlo results indicate

6–7 kBT is required.

4. Discussion and conclusions

Aggregation of cell surface proteins plays an important role

in cellular signaling. In some cases, the aggregation of cell

surface receptors can be directly driven by binding of

multivalent ligands. But in an increasing number of examples,

aggregation of cell surface receptors can be induced by

monovalent ligands, especially if the ligands are membrane

bound (on an artificial membrane or on a neighboring cell). In

these cases, aggregation may be caused by ligand-induced

conformational changes, or by the entropy of the fluctuating

membrane itself. As we have shown here, large-scale aggre-

gation by monovalent ligands can also occur if the ligands and

receptors each exhibit non-ideal behavior in their respective

membranes, i.e. if there are weak attractive interaction in each

membrane that can effectively add together when ligand-

receptor binding occurs. Most notably, not only the intramem-

brane interactions, but also the cross-membrane interaction can

be rather weak and still cause aggregation. A ligand-receptor

interaction of 4 kBT, equivalent to the energy of about 4

hydrogen bonds, is nearly strong enough to give an effective

interaction as strong as the sum of the in-membrane interaction

energies. These results demonstrate a third possible mechanism

for cellular signaling through protein aggregation—a weak

enthalpically driven aggregation.

The different mechanisms for monovalent aggregation are

not exclusive, of course, and conformational, entropic, and

enthalpic mechanisms may share the burden. It is noteworthy

that in an important immune response, T cell activation, there is

significant experimental evidence that weak attractive forces do

exist between receptors [21]. Moreover, the MHC ligand has

been shown to exhibit anomalous diffusion on the cell surface

[22], reflecting non-ideal solution behavior, and there is

evidence that TCR–MHC complexes oligomerize to some

extent in solution [23]. The MHC protein is known to associate

with the CD4 coreceptor on T cells; CD4 dimerizes at high
concentration [24]. With all of these auxiliary weak interac-

tions, it should not be surprising that even when T cell receptor

MHC binding is very transient, large-scale aggregation is

generally observed with triggering peptides. The cooperative

effects among cell membrane proteins are just beginning to be

understood on a fundamental level; these cooperative effects

make possible biological mechanisms that may be critical to

cell behavior.

The importance of relatively weak cell–cell interactions has

been noted by other researchers as well [25]. Cell adhesion

molecules, which are also important in T cell–APC interac-

tions, can have off-rates of >1 s�1. Our modeling suggests that

cooperative effects of many weak interactions can lead to an

effective phase separation in biological signaling, which

switches the cell from an unstimulated to a stimulated state.

Lastly, we note that a phase separation process, driven by

multiple, cooperative weak interactions could help to explain

an important observation in T cell stimulation: individual

MHC–peptides appear to be capable of activating multiple

receptors, via ‘‘serial triggering’’ [26,27]. Phase separation does

not require strong or long-lasting interactions between TCR

and their ligands; rather, the interaction need only push the total

interaction energy over a threshold. The rapid off-rate of the

TCR–ligand interaction can allow the ligand to bind multiple

receptors through an intermembrane partner-switching mech-

anism (similar in spirit to the in-membrane partner switching

discussed by Woolf and Linderman [11]). Importantly, such

‘‘serial triggering’’ does not imply that ligand engagement force

a conformational change in the receptor. Thus, serial triggering

and receptor aggregation are not incompatible mechanisms of

T cell activation, but may arise naturally from the cooperative

nature of the interactions.
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