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Abstract: Many biological scenarios have multiple cooperating searchers,

and the timing of the initial first contact between any one of those

searchers and its target is critically important. However, we are

unaware of biological models that predict how long it takes for the

first of many searchers to discover a target. We present a novel

mathematical model that predicts initial first contact times between

searchers and targets distributed at random in a volume. We com-

pare this model to the extreme first passage time approach in physics

that assumes an infinite number of searchers all initially positioned

at the same location. We explore how the number of searchers, the

distribution of searchers and targets, and the initial distances be-

tween searchers and targets affect initial first contact times. Given a
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2 1 INTRODUCTION

constant density of uniformly distributed searchers and targets, the

initial first contact time decreases linearly with both search volume

and the number of searchers. However, given only a single target

and searchers placed at the same starting location, the relationship

between the initial first contact time and the number of searchers

shifts from a linear decrease to a logarithmic decrease as the num-

ber of searchers grows very large. More generally, we show that

initial first contact times can be dramatically faster than average

first contact times and that initial first contact times decrease with

the number of searchers while average search times are independent

of the number of searchers. We suggest this is an underappreciated

phenomenon in biology and other collective search problems.

1 Introduction

There are many biological examples of a large number of searchers attempt-

ing to find one or more targets. Sometimes, the first target discovered by the

first lucky searcher is particularly important because it results in a cascade of

downstream events. For example, in ant colonies, many ants forage for food;

when the first one is successful, it may use pheromones to recruit other searchers.

Thus, the time for the first ant to discover food may have a disproportionate

impact on resource collection rates. Similarly, näıve T cells search for cognate

antigens in lymph nodes Moses et al. (2019). When T cells bind with target

antigen they activate and replicate in an exponentially growing population of

cells. Thus, the timing of the first contact by the first T cell that finds its target

is particularly important in initiating the adaptive immune response. In these

examples, the time it takes for the initial discovery of a target (what we call the

initial first contact time) may be more important than the average time of all

of the searchers to find their first targets. Here we develop and analyze math-
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ematical models and computer simulations to understand which factors affect

initial first contact times.

In immune system models, it is common to consider the mean or median

search time for a typical T cell to find its target, e.g., (Perelson and Wiegel,

2009; Wiegel and Perelson, 2004; Krummel et al., 2016; Celli et al., 2012; Ferdous

et al., 2022). An analysis of initial first contact times in three-dimensional

volumes has only recently been investigated in a series of publications (Lawley,

2020c,b; Lawley and Madrid, 2020), but these models do not apply to T cell

search that motivated our work. The derivations in these other studies apply

to searchers that start in a single location and search for a single target, and

they rely on population sizes that approach infinity. We call the predictions of

initial first contact times from such models t∞.

In this work we derive initial first contact time predictions for finite popula-

tions of searchers, tfin. This model initially assumes a number of searchers and

targets distributed at uniform random within a volume, and we predict how

tfin scales as the number of searchers increases. We then test different search

scenarios, assess when assumptions made by the tfin and t∞ models hold, and

compare simulated initial first contact times predicted by tfin and t∞.

While we were motivated to develop tfin to predict how quickly the first T

cell would find its target antigen in a lymph node, we also examine whether

tfin can explain other search scenarios relevant for social insects and other col-

lective foragers. Many studies have investigated how colony size affects social

insect foraging, finding that larger colonies are more complex (Anderson and

McShea, 2001), mass recruitment is more effective in larger ant colonies (Beek-

man et al., 2001), but waggle dances are not necessarily more effective in larger

bee colonies (Dornhaus et al., 2006). (Popp and Dornhaus, 2023) found larger

colonies searched an area faster and (Adler and Gordon, 1992) found larger

colonies found more events. However, none of these studies modeled whether



4 1 INTRODUCTION

the first event that triggered subsequent recruitment was found faster in larger

colonies. Some studies suggest this may be the case. For example, a field study

by (Donaldson-Matasci et al., 2013) found that larger honeybee colonies found

resources faster, and as a result, overall foraging rates were better for larger

colonies. Our previous field study(Flanagan et al., 2012) also found that larger

seed harvester ant colonies found piles of seeds faster; however, neither of these

studies had sufficiently detailed estimates of forager population size paired with

and first discovery times to establish a quantitative relationship between the

two. That is the focus of the models we build and analyze here.

Here we develop a model that predicts the initial first contact time for a

finite number of searchers (tfin). We simulate search in different scenarios in or-

der to validate conditions under which our theoretical assumptions do, and do

not, hold. Our goal in this paper is not to test model predictions with biological

data (which we leave to future work), but we parameterize our simulations to re-

flect the numbers of T cell searchers, antigen-carrying dendritic cell targets, and

lymph node volumes across mammals. We show that tfin depends on the num-

ber of searchers (N). In scenarios where multiple searchers are involved, such as

foraging ants, bees, or immune cells, a larger number of searchers can increase

the likelihood of discovering a target quickly. We predict that more searchers

exploring the environment increase the chances that one will stumble upon the

target quickly, whether that target is a seed, a flower or an antigen. Our goal

is to provide quantitative predictions and simulations that test this qualitative

expectation given different numbers and placements of searchers and targets in

different search volumes. In this paper we develop a general model of intial first

contact times, considering various placements of searchers and targets, and we

compare our analysis for finite N to physics models of initial first contact times

that assume an infinite number of searchers all starting in the same location.

This work is a step toward a more general biological theory of first contact
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times. While we are unaware of quantitative models or data of initial first con-

tact times, physicists have developed an extensive literature analyzing extreme

first passage time (t∞) (Redner, 2001; Lawley, 2020a; Basnayake et al., 2019;

Weiss et al., 1983), an approach that predicts the time it takes for the fastest

among an infinite number of searchers to find its target. However, t∞ generally

only considers search problems in which searchers all start at the same location

and search for a single target, the number of searchers is assumed to approach in-

finity, and most work considers searchers on a one-dimensional line. To address

these discrepancies from biological reality, we propose a mathematical model

designed to predict first contacts in the immune system. Motivated by (Ferdous

et al., 2024), tfin is an idealized model of the initial first contact times between T

cells and dendritic cells within the lymph node. This first contact is the critical

step that initiates adaptive immunity and is a key factor in determining how

long it takes T cells to control a viral infection. We consider a finite number of T

cells as searchers and dendritic cells as targets, with both distributed uniformly

in a bounded space representing the lymph node. We show in simulations that

tfin is proportional to the volume of the search space and inversely proportional

to both the number of searchers and the targets. We investigate the influence

of two factors that can reduce search time when there are more searchers: 1)

the initial distance between the searchers and the targets and 2) the chance

that a searcher happens to take a direct path to the target. We expect that

both the shortest distance to a target and the most direct path to the target

will decrease when there are more searchers because both of these fortuitous

events are more likely to occur at least once when there are more searchers.

The major contributions of this paper are that we 1) develop a model (tfin) that

predicts initial first contact times for a finite number of randomly distributed

searchers and targets, 2) compare tfin to the t∞ model that assumes an infinite

number of searchers all starting in one location, 3) analyze the models in four
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scenarios (cases 0-3) with varying searcher and target distributions in order to

provide insights into the applicability of tfin and t∞ in different biologically rel-

evant scenarios, and 4) simulate idealized versions of those scenarios to examine

how well the analytical predictions correspond to those scenarios. We consider

the following cases: In case 0, we consider a random distribution of multiple

searchers and multiple targets. We test whether tfin assumptions are met and

whether simulations are consistent with tfin predictions. We then compare tfin

to t∞, which assumes only a single target. Thus, for all other cases (1-3), we

consider a single target located at the center of the search space (T = 1), and

all searchers start at the same fixed point at some specified distance from the

target (See Figure 1). The different predictions of the t∞ and tfin approaches

are summarized for each case in Table 1.

2 Predictions and Computational Methods

2.1 Summary of Scenarios

We show four scenarios in Figure 1. The tfin and t∞ predictions of initial

first contact times differ because each approach rests on different assumptions.

The predictions are summarized in Table 2.

• Case 0: For multiple searchers and multiple targets, both distributed at

uniform random and with a constant density of searchers and targets, tfin

is expected to be inversely proportional to the volume of the search space

and the number of searchers (N), Equation (5). One of the primary as-

sumptions for t∞ is that all the searchers start from the same location;

since that assumption does not hold in case 0, t∞ does not make a pre-

diction for case 0.

• Case 1: For a fixed initial distance between all the searchers and a single

target, tfin is expected to decrease linearly with the number of searchers,
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according to Equation (7) (the same as case 0). In contrast, t∞ predicts

the initial first contact times to decrease logarithmically with N (Equa-

tion (13)).

• Case 2: For a fixed number of searchers, tfin is expected to increase pro-

portionally to the cube of the distance between all the searchers starting

from the same location and the target according to Equation (8). Our

analysis of t∞ predicts that t∞ scales quadratically with the distance in

Equation (14).

• Case 3: If the density of searchers remains constant within a given volume,

but all searchers initiate their search from a common starting point, tfin

is expected to be constant in Equation (9). t∞ is expected to scale with

length squared divided by N in Equation (15).

While tfin and its underlying assumptions were originally formulated for Case

0, with multiple searchers and targets distributed randomly in a volume, we

extend the examination of tfin to cases 1-3 to assess whether it applies. Similarly,

t∞ and its assumptions were initially designed for Case 1 with the number of

searchers approaching infinity. We explore how well the predictions of tfin and

t∞ correspond to simulations given that the original assumptions may not hold

in all cases. We note that our predictions for tfin are based on an assumption

that each searcher is independent, resulting in an exponential distribution of

search times (Celli et al., 2012). We will show that the assumption holds in

case 0 (the original scenario that tfin was developed for), but it may not hold

for other cases.

2.2 Analysis of tfin

We initially developed tfin to predict the initial first contact time given ran-

domly distributed searchers and targets in a volume. We assume that the con-

tact times between the searchers and targets are memoryless random processes,
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Figure 1: Graphical Representation of the Simulated Cases. In all cases
there are multiple searchers (N). Here, V is the search space, T is the number of
searchers, N is the number of searchers,LST is the length of the distance from the
searchers to the target. In case 0, there are multiple targets and the targets and
searchers are distributed at uniform random in the volume, and their density
is constant as the volume increases. In cases 1 - 3, there is a single target and
the searchers are all located at the same place at distance LST = 0.25 L from
the target so that searchers are equidistant from the target and the boundary.
In case 1, the number of searchers N increases (indicated by the larger circle on
the right) while LST and V are constant. In case 2, N is constant, and LST and
V increase (indicated by the larger box on the right). In case 3, N, LST and V
all increase (indicated by the larger box size and larger circle on the right). We
assume LST is proportional to V 1/3.
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Table 1: Comparison of t∞ and tfin. We assumed an exponential distribution
of search times and a finite number of searchers in our model of tfin. In contrast,
t∞ assumes an infinite number of searchers and that the fastest searcher will
follow the shortest (and therefore, most direct) path to the target.

Experimental variation in N, T and V t∞ prediction tfin prediction

Case 0 (N , T and V increase; mul-
tiple searchers and targets are dis-
tributed at uniform random)

no prediction E[tfin] ∝ N−1

Case 1 (N increases, V is constant;
searchers start at one location; sin-
gle target)

E[t∞] ∝ 1

ln(N)
E[tfin] ∝

1

N

Case 2 (N is constant, V increases;
searchers start at one location; sin-
gle target)

E[t∞] ∝ L2 E[tfin] ∝ L3

Case 3 (N and V increase; searchers
start at one location; single target)

E[t∞] ∝ L2

lnN
E[tfin] ∝ 1

such that the first contact times of each searcher follow an exponential distri-

bution. This is shown in case 0 as a bounded cube with N searchers looking for

a number of targets (T ). If the probability that a searcher finds the target in

time t is P (Tt), then the probability P (Tt) that at least one searcher encoun-

ters a target between time 0 and time t can be modeled with an exponential

distribution,

P (T < t) =
NT

λ
e

−tNT
λ (1)

Here, λ is the mean contact time between a single searcher and a single target

within a volume V . (Celli et al., 2012) showed that

λ ∝ V (2)

To obtain the expected encounter time, we integrate over all time,

E[tfin] =

∫ ∞

0

tNT

λ
e

−tNT
λ dt =

λ

NT
(3)
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By replacing λ with V from Equation (2) in Equation (3) we get,

E[tfin] ∝
V

NT
(4)

• Case 0 (N, T, and L all increase, Multiple Targets):

Here we assume there are multiple searchers and targets and the density

of searchers and targets are constant, N ∝ T ∝ V , then from Equation (4)

we get,

E[tfin] ∝ V −1 ∝ N−1 (5)

That is, given a constant density of searchers and targets, the time for the

initial first contact between a searcher and a target is inversely propor-

tional to the search volume and the number of searchers. In this scenario,

the initial first contact predicted tfin speeds up linearly with N .

In Figure 3 we show that simulations of case 0 generate exponentially distributed

contact times among all of the searchers in a simulation, consistent with the

primary assumption in tfin. In (Figure 4) we show that the initial first contact

times produced by the simulations are consistent with the (tfin) prediction. Next,

in order to compare our tfin prediction to the t∞ prediction, we consider 3 other

cases with searchers starting at the same location and searching for a single

target. Thus we set the number of targets T = 1, simplifying Equation (4) to

E[tfin] ∝
V

N
(6)

In addition to allowing us to compare the predictions of the tfin and t∞ ap-

proaches, these scenarios also give us insights into the contribution of two fac-

tors that determine tfin: (1) the initial distance between the lucky first searcher

and the nearest target versus (2) the directness of the path of the lucky first

searcher toward the target because in these scenarios we fix (1) the distance
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between all searchers and the target.

(1) (2) (3)

Searcher Target

Figure 2: Schematic Showing Simulations of Sases 1 - 3. Multiple
searchers (pink) looking for a target (green) in a confined cubic region, with
the target placed at the center. The figure shows (A) the initial setup where all
the searchers are in the same location with a fixed distance LST = 0.25L from
the target at the center of a fixed volume (Case 1). (B) the search progress at
the 250th step, with the searchers moving via Brownian motion and (C) the first
contact between a searcher and the target (Highlighted in yellow). In Case 1,
we fixed volume at 8mm3 and systematically increased the number of searchers
(N) from 5 to 100 000. In Case 2, we increased V from 8 to 33 000mm3 (L
from 2 to 32) with fixed N . In Case 3, we increased both V and N with the
N ranging from 240 to 1 000 000 by scaling with the volume (N ∝ V ). In Case
0, with randomly distributed searchers and multiple targets (not shown) we
increased V , T and N with the N ranging from 20 to 2000 (N ∝ V ), T ranging
from 80 to 8000, and V ranging from 8 to 790. Each simulation was replicated
30 times for each combination of parameters.

• Case 1 (N increases, V is constant, Single Target):

Since V is constant and N increases, Equation (6) is simplified to:

E[tfin] ∝
V

N
∝ 1

N
(7)

This case with a single target in a fixed volume gives the same prediction

as case 0 for multiple randomly distributed searchers and targets in an

increasing volume: as N increases, the expected initial first contact time

decreases linearly.
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• Case 2 (N is constant, V increases, Single Target):

Since V = L3 and N is constant, Equation (6) becomes,

E[tfin] ∝
V

N
∝ L3 (8)

In this scenario, the expected initial first contact time increases linearly

with the volume. As the search volume (and therefore L) increase, it takes

more time for the searchers to cover the increased space required to find

the target.

• Case 3 (N and V both increase, Single Target) In this scenario we

set N ∝ V , so that Equation (6) predicts,

E[tfin] ∝
V

N
∝ 1 (9)

Thus if density is constant, tfin is predicted to be constant across volumes.

2.3 Analysis of t∞

The t∞ prediction was developed by physicists to describe the time for the

first of an infinite number of searchers to find a target in an idealized search,

originally on a one-dimensional line (Weiss et al., 1983; Redner, 2001). The the-

ory has recently been expanded to more dimensions and more complex searches

(Lawley, 2020a; Basnayake et al., 2019; Lawley, 2020c; Ro and Kim, 2017),

but most formulations consider only very large N that approaches infinity. t∞

predicts that,

E[t∞] ∝ L2
ST

4D ln(N)
, N → ∞ (10)

where N is the number of searchers, D is a diffusivity, and LST is the distance

between the identical starting location of all searchers and the target. The model
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assumes searchers move via a random walk. The time for the first searcher

to reach the target is, in essence, the rate of spread of the furthest of the

diffusing searchers. That diffusion creates a Gaussian distribution of distances

from the start location. The logarithmic term in the denominator comes from

determining the time it takes for the tail of the distribution to reach the target.

The full derivation of Equation (10) is in (Lawley, 2020c) (Equation 5-7,

Section 2.1). t∞ predicts that the distance traveled by the fastest searcher

increases slowly. As the number of searchers increases, the time required for the

first searcher to reach the target decreases as a slow logarithmic function of N .

Note that this formulation of t∞ doesn’t specifically address how the volume of

the search domain affects search time; it considers only the distance between

searcher and target. This is because the approach assumes that the fastest

searcher will be the one that has taken the most direct path from the start

location to the target; any searcher that meandered through the full volume of

the search space would not be the first searcher to arrive, and therefore would not

be relevant to the initial first contact time. This argument only holds for large

N that approaches infinity. However, many biological search processes have a

finite number of searchers within a bounded volume, for example, immune cells

search in the volume of a lymph node or an infected organ, and foraging animals

search within a 2D or 3D territory. We consider only the 3D case here and set

LST to scale with the side L of the volume V of the search domain such that ,

LST ∝ L ∝ V 1/3 (11)

For simplicity, we consider a constant rate of diffusivity (D). By replacing LST

with L and D with a constant, Equation (10) gives us a simplified expression
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for t∞ in a bounded volume of length L:

E[t∞] ∝ L2

ln(N)
, N → ∞ (12)

We consider three cases for Equation (12).

• Case 1 (N increases, L is constant, Single Target):

In this case, we assume that LST remains fixed. As the number of searchers

N increases, we reformulate the equation Equation (12) by ignoring scaling

constants to obtain a prediction from t∞,

E[t∞] ∝ L2

ln(N)
∝ 1

ln(N)
N → ∞ (13)

This equation predicts that as N grows, the expected time for finding

the target decreases logarithmically with N. The diminishing returns of

adding more searchers are evident, indicating that large groups of searchers

only slightly reduce the search time compared to smaller groups when the

distance (L) is fixed.

• Case 2 (N is constant, L increases, Single Target):

In this case, we keep N constant while V (and therefore LST ) increase.

Then, Equation (12) becomes,

E[t∞] ∝ L2 (14)

In this scenario, t∞ is predicted to increase with L2 while volume increases

with L3.

• Case 3 (N and L increase, Single Target): In this case, N increases
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proportional to V , leading to:

E[t∞] ∝ L2

ln(N)
, where N ∝ V ∝ L3 (15)

The different predictions from t∞ and tfin are summarized in Table 1.

2.4 Computational Experiments

In order to test the tfin prediction for Case 0 and the competing predictions

of tfin and t∞ for cases 1-3, we conduct a series of experiments using an agent-

based model implemented in Biodynamo (Breitwieser et al., 2022). We consider

that a contact happens when the centers of a searcher and a target are within

10 µm distance. Hence the physical sizes of searchers and targets do not affect

search times. To simulate T cells searching for dendritic cells in the lymph node,

we utilized a model of Brownian motion parameterized from empirical data of

T cell movement in lymph nodes from (Fricke et al., 2016). Figure 2 illustrates

the experimental setup of our simulations designed to test the predictions of the

tfin and t∞ approaches to estimating the initial first contact times in the 4 cases

shown in Figure 1.

The scarcity of empirical data presents a challenge in directly matching the

numerical simulations to real biological systems. We acknowledge this limitation

and took steps to align the simulation parameters in case 0 with available data

from the immune system. We chose search volumes to match the range of sizes

of mammalian lymph nodes and estimated numbers of searchers to match the

number of T cells in each clonal line that search for antigen-bearing dendritic

cells in each lymph node and also estimated the number of targets for case 0

to match the number of dendritic cells in lymph node carrying the same type

of antigens. The purpose of the computational simulations is to establish a

proof of principle showing how the initial first contact times vary with N and
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various other specifications of the search problem. Our intent here is not to

test our predictions with biological data, but rather to demonstrate through

simulations how various mathematical assumptions and predictions hold given

simple simulations using finite numbers of searchers, targets, and volumes that

approximate different biological scenarios. Our simulations validate cases where

different approaches (tfin and t∞) are (and are not) able to predict biologically

relevant phenomena. All the data used in our analysis are summarized in an

online dataset. 1

2.5 Fitting Exponents Using the ABM

In order to fit model predictions to simulated data, we estimate the best-fit

exponents that relate initial first contact times to the dependent variable in each

scenario. We first consider the generic formula in Equation (4) as follows,

E[tfin] ∝
V i

N jT k
(16)

For ease of presentation, we convert Equation (16) to base 10:

log10(E[tfin]) = log10(
aV i

N jT k
)

= log10 a+ i log10(V )− j log10(N)− k log10(T ) (17)

If we set, C1 = log10 a then,

log10(E[tfin]) =C1 + i log10(V )− j log10(N)− k log10(T ) (18)

and exponentiating,

E[tfin] = 10C1+i log10(V )−j log10(N)−k log10(T ) (19)

1https://docs.google.com/spreadsheets/d/1AiWJ2onZYN5F-42LNLv-14kUluWyQhGSD3JFk-mNT4Q/

edit?usp=sharing

https://docs.google.com/spreadsheets/d/1AiWJ2onZYN5F-42LNLv-14kUluWyQhGSD3JFk-mNT4Q/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1AiWJ2onZYN5F-42LNLv-14kUluWyQhGSD3JFk-mNT4Q/edit?usp=sharing
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For Case 0, where numbers of searchers and targets maintain a constant

density as volume increase (i.e., V ∝ N and T ∝ N), we further simplify eq. (18)

because N , V , and T scale isometrically, thus we can substitute a single scaling

exponent to reflect the scaling in terms of N :

log10(E[tfin]) =C1 + µ log10(N)

We use linear regression on log-transformed simulation data to determine the

value of the scaling exponent µ. This provides the final scaling relationship

between tfin and N for case 0.

E[tfin] = 10C1+µ log10(N)

We fit the scaling constant C1 to the simulated data.

Similarly, for Case 1 where there is a single target (log10(1) = 0), N increases

and V is constant (i log10(V ) = C2), we simplify eq. (18) as,

log10(E[tfin]) =C1 + C2 − j log10(N)− 0

=C1′ − j log10(N)

where C1′ = C1 + C2. We again use linear regression on log-transformed simu-

lation data to determine the value of the scaling exponent j. We use the same

procedure to estimate scaling exponents for cases 2 and 3 for tfin; and for t∞

for Cases 1-3.
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Figure 3: Distribution of Contact Times of All Searchers within One
Volume for Case 0. We show the distribution of the first contact times in
two (out of 30) simulations of case 0. Panel A shows the distribution of 629
first contacts for 629 searchers with 2533 targets in a 921 mm3 search volume.
Panel B shows the distribution of 1989 first contact times for 1989 searchers with
8011 targets in a 3640 mm3 search volume. Data are plotted as a histogram
of probabilities of the initial first contact time of each searcher on the y-axis
for the contact time given on the x-axis. The theoretical probability density
functions (PDF) of a Gaussian distribution and an exponential distribution for
the same mean and standard deviation as the data are shown for comparison.
The data are visually consistent with an exponential distribution. The result
of the goodness of fit tests (SSE and AIC) in Table 2 are consistent with our
assumption of the exponential distribution of the first contact times.

3 Results: Comparing model predictions to sim-

ulated data

The tfin approach to estimating the initial first contact times was developed

for case 0 in which a uniform random distribution of searchers and targets are

placed in a volume with constant density so that N and T increase linearly with

V . The key assumption in tfin is that initial first contact times (the first time

any one of the searchers comes into contact with a target) are exponentially

distributed within each simulation. This allows us to predict that the first time

the first searcher in a given simulation will contact a target is 1
N . We found

that in all case 0 simulations, an exponential distribution was a good fit. We
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Figure 4: tfin Predictions Compared to Simulations Corresponding to
Case 0: Constant Density, Multiple Targets. Each red circle represents
the time for the first searcher, in a population of N searchers, to contact its
target, where N is varied along the x-axis. The initial first contact time for
each replicated simulation is shown as red dots. tfin is predicted to scale as N−1

(dashed green line, Equation (5)). The dotted purple line shows the regression
through the simulated data: E[tfin] ∝ N−1.05 with a 95% CI [−1.1, −0.98] for
the exponent, consistent with the exponent of -1 predicted by tfin. Variance
among the initial first contact times for a given N ranges from 0.25 to 0.36.
In contrast, the mean search times (blue dot), averaged over all N searchers in
each simulation, across the same values of N , are much larger and do not vary
with N , and have extremely low variance, all less than 0.003. 100 replicates are
used to calculate the mean first contact time and the initial first contact time
for each value of N ; thus there are 100 blue and 100 red points for each value
of N .
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Table 2: Statistical comparisons of the Gaussian and exponential distribution
fit to the initial first contact times for case 0. The exponential distribution
has lower mean SSE and AIC values than the Gaussian distribution, indicating
a better fit to the data. 100 simulations were replicated for each number of
searchers. Numbers are given to two significant digits.

Number of searchers
20 63 200 630 2000

Exponential SSE 8.1.2× 10−8 4.6× 10−10 4.6× 10−11 4.6× 10−12 7× 10−13

AIC 2600 2800 3000 3200 3400
Gaussian SSE 1.3× 10−8 6.7× 10−10 1.2× 10−10 3.7× 10−11 1.9× 10−11

AIC 2600 3000 3300 3900 4300

compare to a Gaussian to demonstrate the difference in sum of squares error

(SSE) and Akaike information criteria (AIC) (Table 2). In Figure 3, we show

example probability distributions from two sets of simulations. These and the

other simulations show a close fit to an exponential distribution.

Given that the simulation validated the assumption that first contact times

are exponentially distributed for case 0, we then test the prediction that tfin ∝ 1
N

from (Equation (5)). In figs. 4 to 7 we show model predictions compared to

simple regressions through the data. We show only the predicted scaling rela-

tionship to N or V by fitting a constant to adjust the height of the line to fit

the data. For tfin, we chose a scaling constant to fit the height of the line to

correspond to the smallest N , and for t∞ we chose the scaling constant to fit

the largest simulated N . Thus, the figures should be interpreted as demonstrat-

ing how simulations compares to model predictions for how initial first contact

times change systematically with N or V . The fitting procedure is detailed in

Section 2.5.

Figure 4 shows a very close correspondence between the tfin prediction and

the simulated data. We also show that initial first contact times are orders of

magnitude faster than the mean first contact times. The mean search time is

(unsurprisingly) unaffected by N , and it is far less variable. This demonstrates

that our model for tfin accurately predicts 1
N scaling for its intended use case,
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and that initial first contact times are substantially faster than mean contact

times. We now test whether tfin can be extended to 3 search scenarios with a
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Figure 5: tfin and t∞ Predictions Compared to Simulations Corre-
sponding to Case 1: Single Target, Constant Volume, Increasing N.
Each red circle represents the time for the first searcher, in a population of N
searchers, to contact its target, where N is varied along the x-axis. 30 simula-
tions were run for each value of N , and the first contact in each simulation is
shown. The pink dotted line connects the medians of the simulated data. The
green line shows the tfin prediction (Equation (7)) and the blue line shows the
t∞ prediction (Equation (13)), both fitted to the simulated data. The regres-
sion through the simulated first contact points N < 103 is N−1.1 with 95% CI
[−0.86, −1.3] consistent with the tfin prediction for small N . The regression
through data (pink line) where N >= 103 gives t∞ ∝ log(N)−1.94 with a 95%
CI [−2.1, −1.8] which is slightly steeper than the 1/ log(N) prediction of t∞.
Prediction lines are shown with scaling constants set to fit the median of either
the smallest (for tfin) or largest (for t∞) simulated data.

single target and all searchers placed at the same initial location. We compare

tfin predictions to t∞ predictions that assume an infinite number of searchers.

For case 1 we compare tfin and t∞ predictions given a single target in a constant

search volume while increasing N across simulations. This was the scenario

t∞ was designed for, assuming N approaches infinity. Figure 5 shows that for
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small N < 103 initial first contact times decrease approximately linearly with N ,

consistent with our tfin prediction that initial first contact times are proportional

to 1
N ; for large N ≥ 103, simulations are approximately consistent with the t∞

prediction, proportional to 1
ln(N) (Equation (13)). Thus, even in this search

scenario that differs from the original scenario envisioned by the tfin approach,

tfin approximates initial first contact times for biologically relevant numbers of

searchers, while t∞ better approximates initial first contact times for larger N .
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Figure 6: tfin and t∞ Predictions Compared to Simulations Corre-
sponding to Case 2: Single Target, Increasing Volume, Constant N.
Symbols are replicated from Figure 5. The green line shows the tfin ∝ L3 pre-
diction and the blue line shows the t∞ ∝ L2 prediction. The regression through
the simulated data is t ∝ L2.17 with 95% CI [2.14, 2.2], close to the t∞ predic-
tion.

For case 2 we compare tfin and t∞ predictions to simulations where N is

fixed and V increases. Figure 6 shows that the simulations are very close to the

t∞ prediction that time is proportional to L2, and considerably less steep than
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the tfin prediction which is proportional to L3. Similarly, the simulation tests

of case 3 in which both N and V increase, are considerably closer to the t∞

prediction (L2/ln(N)) than the constant tfin prediction.
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Figure 7: tfin and t∞ Predictions Compared to Simulations Corre-
sponding to Case 3: Single Target, Increasing Volume, Increasing
N. Symbols are replicated from Figure 5. The green line shows the tfin ∝ 1
prediction and the blue line shows the t∞ ∝ L2/ ln(N) prediction.

4 Discussion

4.1 Summary

We developed an analytical model, tfin, designed to predict how quickly the

first of many searchers finds its first target, given that searchers and targets are

distributed randomly in a volume. Simulations validate the key tfin assumption

that search times are exponentially distributed (Figure 3) and the key prediction
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that initial first contacts scale as 1
N (Figure 4) for case 0 with a uniform random

distribution of searchers and targets that are kept at constant density as vol-

ume increases. In order to compare tfin to another model of initial first contact

times (t∞), we conduct a set of simulations where all searchers start at the same

location and search for a single target. We find, for case 1 (where the distance

between searchers and target is fixed), the tfin
1
N prediction is consistent with

simulations for small N , and the t∞
1

ln(N) prediction is close to simulations for

large N (Figure 5). In cases 2 and 3, we systematically increase the distance be-

tween the initial placement of searchers and the target. The initial first contact

times are close to t∞ predictions and quite far from tfin predictions (Figure 6

and Figure 7). Our analysis of tfin in case 0 suggests that the fastest searcher is

one that is lucky in two respects: it happens to be placed near a target, and it

takes a relatively direct path to the target. Because tfin predictions do not hold

in cases 2 and 3 when distance increases, this suggests that 1/N scaling only

holds when distances between searchers and targets are fixed. We suggest that

the existence of lucky first searchers is an important benefit of collective search,

particularly when the success of the first searcher causes important downstream

events.

4.2 Interpretation of scenarios

In this paper we simulated idealized searches that correspond to the volume

of lymph nodes across mammal sizes with estimates of the numbers of T cell

searchers and dendritic cell targets within those lymph nodes, where the first T

cell that find a dendritic cell presenting cognate antigen initiates the adaptive

immune response motivated by ongoing work (Ferdous et al., 2024). However,

we suggest that the initial first contact times are relevant to a broader range of

biological phenomena.

To better characterize the circumstances under which tfin makes valid pre-
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dictions, we compare our analytical predictions, to the similar Extreme First

Passage Time models developed by physicists to describe the time for a popula-

tion of searchers to find a single target. That theory (that we call t∞) employs

the useful simplifying assumptions of an infinite number of searchers diffusing

in one dimension to find a single target. Specifically, we compare the tfin pre-

dictions to t∞ predictions extended by Lawley (Lawley and Madrid, 2020) to

predict the initial first contact times in three dimensions. While tfin predicts

that larger populations of searchers find their targets proportionally faster, t∞

predicts a much slower logarithmic speedup in search times as N increases.

We compared t∞ predictions to those of tfin under three experimental cases.

In case 1, when we hold the size of the search volume constant (and conse-

quently the distance between the initial location of the searchers and the target

are held constant), we find that simulated initial first contact times are consis-

tent with the linear decrease with N predicted by tfin when N is less than 1000;

for N > 1000 simulations are consistent with the t∞ logarithmic prediction Fig-

ure 5). This result suggests that when the only variation across experiments is

N , the tfin predictions are reasonable approximations for biologically relevant

numbers of searchers. We note that in this case the key assumption holds that

search times are exponentially distributed among the searchers within each sim-

ulation. However, there is a crossover, such that t∞ applies when N approaches

infinity. Once N is sufficiently large there is only a logarithmic benefit to in-

creasing N . We expect that the values of N for which the 1
N scaling regime holds

depends on the details of how far apart the searchers are placed from the target,

the behavior of searchers at the boundaries, and the dimension of the system

(i.e. whether searchers are in 2D or 3D). Some of these issues are explored in (Ro

and Kim, 2017) which also found a transition from 1
N to 1

ln(N) scaling although

the presented the transition in more general dimensionless terms rather than for

a particular number of searchers. We leave additional analysis to future work
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and suggest that interdisciplinary approaches among physicists, biologists, and

computer scientists are needed to further understand which factors most influ-

ence initial first contact times in different scenarios with biologically relevant

numbers of searchers.

In cases 2 and 3 when we simulate increasing distances between the target

and initial searcher placements, tfin predictions are not close to simulated re-

sults (Figure 6 and Figure 7). We predict that tfin doesn’t not hold in these

cases because the most important factor in these cases is that the distance be-

tween searchers and targets increases across simulations. This sheds light on

an important feature of case 0, where searchers and targets are distributed at

random and with constant density. In case 0, the distances between the initial

placement of searchers and targets are determined by a random process, and

therefore, when there are more searchers and targets in a larger volume, the

closest distance between a searcher and the nearest target will decrease. Thus,

the lucky first searcher will be one that happens to be very close to its target as

well as one that happens to take a relatively direct path to that nearby target.

The t∞ predictions developed by physicists only consider the directness of the

path because that approach assumes a fixed distance.

The 1
N scaling of initial first contact times suggests a substantial and un-

derappreciated advantage of collective search. Case 0 suggests that in a bigger

lymph node with 100 times more T cell searchers and dendritic cell targets, T

cell activation would occur 100 times faster. Case 1 suggests that a bee colony

(or in 2D, an ant colony) with 100 more searchers starting in a single nest and

foraging independently in a fixed-size territory, would find a single resource (e.g.

a rare patch of flowers or food) 100 times faster. These advantages would not

directly accrue to the average searcher, which would not find a target any faster

if it continued to search independently. It is only the lucky first searcher that

finds a target faster in a larger population. However, if there is any signal
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(e.g., waggle dance or pheromone communication) or structural change (T cell

replication or changes in influx and efflux to and from lymph nodes) following

the first target discovery, then subsequent searchers could modify their search

to take advantage of that information. This is consistent with findings from

(Donaldson-Matasci et al., 2013) that larger bee colonies found resources faster

and overall foraging rates were greater in larger colonies. Similarly, the first

lucky mutation in a population or the lucky first receptor to bind in a cellu-

lar interaction, means that larger populations of individual agents have a lucky

first encounter faster and the whole system can benefit from that lucky first en-

counter. Thus, the 1
N initial first contact time confers a significant advantage to

a large population size. However, we note a caveat that real biological systems

may deviate in important ways from the simple simulations we used here. For

example, the density of cognate T cells may not be constant in lymph nodes,

and forager territory may scale non-linearly with the forager number. The tran-

sition from search times that scale as 1
N , to search times that scale with 1

ln(N)

is also important for analyzing the costs and benefits of increased population

size. In many realistic scenarios, more searchers can lead to a proportionally

faster search, but as size increases that benefit may diminish. This suggests

that, combined with other tradeoffs, initial first contact times may contribute

to an optimal colony size under different conditions. Our findings are relevant

not only for understanding collective search in biology but also for engineer-

ing collective searchers in swarm robotics, a field that takes inspiration from

collective search in biology (Dorigo et al., 2020; Lu et al., 2020; Fricke et al.,

2013; Hecker and Moses, 2015; Talamali et al., 2021). Understanding the transi-

tion from linear to logarithmic dependence on the number of searchers and the

shift from cubic to squared initial distance between the searchers and the target

dependence with increasing search volume points to important constraints on

scalability, a key concern in swarm robotics. We suggest that swarm robotic



28 4 DISCUSSION

systems can both benefit from an understanding of initial first contact times,

and serve as real-world testbeds that can help to develop and refine biologi-

cally relevant theories about how initial first contact times depend on numbers,

search areas, or volumes and the distribution of searchers and targets in space.

Direct biological data to test the initial first contact time predictions are scarce.

In other work (Ferdous et al., 2024) we show that tfin predictions are consistent

with the time to initiate adaptive immunity, but the details of how quickly each

individual T cell finds its target are poorly understood. We hope that this paper

will encourage biologists to report initial first contact times in empirical studies.
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