
A Distributed Deterministic Spiral Search Algorithm for Swarms

G. Matthew Fricke,1∗ Joshua P. Hecker,1 Antonio D. Griego,1 Linh T. Tran,1 and Melanie E. Moses1,2,3

Abstract— As robot swarms become more viable, efficient
solutions to fundamental tasks such as swarm search and col-
lection are required. We propose the distributed deterministic
spiral algorithm (DDSA) which generalises a spiral search pat-
tern to robot swarms. While being an effective search strategy
in its own right, the DDSA is also a useful point of comparison
for other swarm search strategies. Such a benchmark for robot
swarm search is currently needed but missing. As a case study,
we compare the DDSA to a biologically-inspired central-place
foraging algorithm that uses stochastic search, memory, and
communication to efficiently collect resources in a variety of
different resource distributions.

I. INTRODUCTION

Many swarm robot applications require the detection and
collection of targets by teams of robots. These tasks include
planetary surveys [1], land and sea mine clearance [2],
pollution mapping by subsurface robots [3], environmental
monitoring, survivor location in hazardous environments [4],
[5], military applications [6], and agricultural pest control
[7]. When the requirement that targets be transported to
a single collection point is included in a swarm search
problem, it becomes a central place foraging task [8]. Central
place foraging tasks include crop harvesting [9] and planetary
resource collection [10].

Spiral search patterns for single searchers with stationary
targets have been studied extensively and found to have de-
sirable optimality properties [5], [11]–[16]. These properties
include detection of the nearest targets first, complete cover-
age of the area within the spiral, and minimal oversampling.
Detection of the nearest targets first is particularly important
for central place foraging because it minimises the per-target
trip time to the collection point.

Here we present the distributed deterministic spiral algo-
rithm (DDSA). The DDSA generalises a single robot square
spiral to any number of robots. The generated spirals are
interlocking paths that preserve the determinism of the single
robot case and the consequent optimality guarantees. We
implement the DDSA using the ARGoS swarm simulator
[17] in order to observe how foraging efficiency scales with
the number of searchers and targets. The physical robots we
simulate are called iAnts [18]. Groups of iAnts are designed
to meet the fundamental properties of a swarm described by
Brambilia et al [19]. We compare our results to the central
place foraging algorithm (CPFA) developed by Hecker and
Moses [20], [21].

1Computer Science Department, 2Biology Department, University of New
Mexico, Albuquerque, USA.3External Faculty Member, Santa Fe Institute,
Santa Fe, USA.
∗Correspondence: mfricke@cs.unm.edu

In both swarm robotics [22] and ecology [23], [24] the
performance of systematic search strategies, including spiral
search, is assumed to degrade significantly in the presence
of error. Stochastic methods which are more resilient to
noise are therefore favored [25]. We investigate the impact
of positional error on the performance of the DDSA and
compare our results to the CPFA.

Central place foraging algorithms do not have a baseline
of comparison. This makes it difficult to evaluate the effec-
tiveness of foraging algorithms. Swarm algorithms tend to be
probabilistic and contingent on the hardware or simulation
in which they are implemented. This makes improvements
in performance difficult to compare across systems and hard
to describe analytically. We propose the use of the DDSA
as a point of comparison for other central place foraging
algorithms. The DDSA has two essential properties that
make it a good candidate as a baseline algorithm: 1) it is
simple from a theoretical point of view, being deterministic
and having behaviour definable using a simple recurrence
relation, and 2) in the error free case, it guarantees collection
of the nearest targets first, complete coverage, and minimal
repeated sampling.

II. RELATED WORK

In addition to the single searcher work listed in the intro-
duction, Ryan and Hedrick describe a square search pattern
carried out with a single helicopter [26]. This search pattern
is defined in Appendix H of the Coast Guard Operating
Manual and is similar to the DDSA single searcher base
case.

Baeza-Yates and Schott describe a multi-agent spiral
search algorithm in which agents begin at a central point
[27]. However, because they use a circular spiral the
searchers diverge from one another over time. As a result,
the approach is only able to reliably detect lines rather than
point targets placed at arbitrary locations in the plane.

Parallel spiral search approaches have also been imple-
mented in which each searcher performs an independent
single agent spiral spatially removed from the other members
of the swarm [28], [29], a behaviour observed in ants in
our own lab.† Stocastic spiral search patterns have also
been observed as a central place foraging stratgey of desert
ants (Cataglyphis fortis) [30]. These ants inhabit salt pans,
which are flat and obstacle free compared to most natural
landscapes.

†Spiralling Ant Video: youtu.be/N46u0xLl56o

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Daejeon Convention Center
October 9-14, 2016, Daejeon, Korea

978-1-5090-3762-9/16/$31.00 ©2016 IEEE 4430

The Multiple Robots Internal Spiral Coverage algorithm
is a solution that guarantees complete coverage of a envi-
ronment by partitioning the space equally among multiple
robots [31]. This approach differs from the DDSA because
the robot search paths are discretized by a grid structure and
robots are assigned to regions within the grid.

In work closely related to our own, Skubch decribes
a “proof of concept” approach for generating a circular
distributed spiral for multiple robots [32]. A dynamic con-
straint optimisation function uses stateful-feedback and a
shared datastructure to coordinate the movement of robots
in the swarm. Intriguingly, this dynamic constraint update
at each time step allows the redistribution of robots in the
event of robot failure, but also results in robots randomly
switching between each other’s spiral paths. In our own
approach the search pattern is predetermined and robots do
not comminicate with one another during search or maintain
a shared datastructure.

López and Maftuleac describe a deterministic search strat-
egy for idealized searchers that in the case of 2 and 4
searchers results in an interlocking spiral [33]. When the
number of searchers exceeds 4, the algorithm partitions
the space into expanding wedges. This strategy requires
searchers to perform a right angle turn every step. They find
this approach to be robust to error in target detection and
searchers with differing speeds.

The CPFA with which we compare the DDSA is an ant-
inspired algorithm [20], [21]. As robots search the envi-
ronment they probabilistically place waypoints at locations
with high target density. These waypoints influence other
members of the swarm towards searching areas where more
targets are expected to be found. When not using waypoints
robots perform a random walk with decaying correlation.
This strategy ensures that areas near where a target was
previously found are searched intensively but that if nothing
is found the robot quickly moves to a new area. The
parameters that govern the CFPA, such as the probability
of placing waypoints as a function of local target density,
are optimised with a genetic algorithm.

III. METHODS

A. The Algorithm

The DDSA specifies the interlocking spirals for a group of
robots by calculating how far each robot must travel along
each edge of their particular spiral (Figure 1). Calculating
the spiral paths requires knowing 1) how many robots there
are so enough room is left for all of them, 2) the target
detection range of the robots so the gap between spirals is
eliminated, 3) how far into the spiral the robot is, since the
spiral expands over time, and 4) the index of each robot in
a predefined order.

Let DH be a function that determines how far the current
robot should travel in a given cardinal direction, H , for a
particular circuit count, c. The circuit count is the number of
times a robot has completed movement in all four directions
in N, E, S, W order. Robots move away from the central
location and order themselves on the 0th circuit. Formally,

Fig. 1: The DDSA running in ARGoS, overhead view. The
robots search a continuous plane employing a spiral search
pattern beginning at a central collection point. Targets are
shown as black dots arranged in a partially clustered distri-
bution. Robots are marked with a blue or green dot. Robots
with a green dot are carrying targets, those with a blue dot
are searching. Coloured lines are the paths of the various
robots. Paths taken to and from the central collection point
are not displayed. The simulation is perfomed in continuous
space and robot paths and target placements are not lattice
bound.

DH(i, c, R) : I × N0 × N0 where I = {i | 1 ≤ i ≤ R} is
the index of the current robot, c is the current circuit, and
R is the total number of robots. The north (N) and east (E),
and south (S) and west (W) movement cases are symmetric,
so DN = DE and DS = DW.

DN(i, c, R) =

i c = 0

DN(i, 0, R) +R+ i c = 1

DN(i, c− 1, R) + 2R c > 1

(1a)

DS(i, c, R) =

{
DN(i, c, R) + i c = 0

DN(i, c, R) +R c > 0
(1b)

Requiring each robot to know the swarm size and its index
implies global knowledge which would theoretically violate
a principle of swarm design. Fortunately there are a number
of consensus addressing algorithms for multi-robot systems
that allow the swarm to determine its size and introduce an
ordering [34].

The gap between adjacent search paths, g, must be narrow
enough so that the target detection ranges of robots on adja-
cent paths overlap to guarantee complete coverage; however,
overlap should be minimized to avoid resampling of the same

4431

location. The target detection range, r, is 13 cm in our robots,
suggesting a gap of 26 cm. However, at the corners of the
square spirals the distance between paths increases to

√
2g2.

Therefore, in order to guarantee complete collection within
the spiral, we set g =

√
(2r)2/2 ≈ 18 cm to compensate.

Let S be the set of searcher positions, along with DH and
g we can define interlocking square spirals for each robot
and the state machine given in Algorithm 1.

Algorithm 1 DDSA

. Distributed across robots
1: for all robots i← 1 to R do
. Create a spiral pattern to follow and store it

2: for c← 0 to NCircuits do
3: Q.enqueue(〈0, gDN (i, c, R)〉)
4: Q.enqueue(〈gDE(i, c, R), 0〉)
5: Q.enqueue(〈0,−gDS(i, c, R)〉)
6: Q.enqueue(〈−gDW (i, c, R), 0〉)
7: end for

. Start at collection point and perform spiral
8: while ¬Q.empty() do
9: w ← s+Q.dequeue()

10: Move toward w
11: if target found at current location s then
12: Return to collection point with target
13: if at collection point then
14: Deposit target
15: Return to location s
16: end if
17: end if
18: end while
19: end for

B. Robot Simulation

We implement the DDSA and CPFA using the ARGoS
swarm robot simulator [17].‡ ARGoS supports high fidelity
ODE physics engines which allow the accurate detection
of robot collisions. We use the 2D physics solver provided
with ARGoS running at 320 updates per second for our
simulations.

The parameters for the robots are informed by those of
the physical iAnt robots designed and built in our lab [20].
Basing the simulated robots on physical robots allows us to
choose positional error that closely matches our experience
with real hardware. In order to represent iAnt hardware, the
simulated robots are 8 cm in radius and have a downward
facing camera capable of seeing directly below the robot.
Targets have a radius of 5 cm, together with the 8 cm robot
viewing area this gives a value of 13 cm for parameter r
in the DDSA. Robots have a forward movement rate of
16 cm s−1 and a rotation rate of 8 cm s−1 or approximately
1 rad s−1. Robots move 8 cm towards their goal locations
between reorientations.
‡The software used in this work is available on GitHub:
github.com/BCLab-UNM/DDSA-ARGoS/release/0.2-beta
github.com/BCLab-UNM/CPFA-ARGoS/release/0.1-beta

Fig. 2: The CPFA running in ARGoS, overhead view. The
partially clustered distribution of targets is shown as black
dots, robots green or blue dots, lines indicate the paths
taken by searchers during the experiment. Red dots indicate
waypoints used by searchers to communicate the location of
dense target clusters to the swarm.

We simulate error by applying Gaussian noise to robot
destinations. To replicate our observations that the iAnt
robots accumulate error linearly with distance [18], we make
the standard deviation increase with the distance from the
robot’s current position to its destination position, x. We
multiply the standard deviation by a noise coefficient, e, in
order to change noise severity. Therefore, our noise variates,
v, are generated by:

v ∼ N (0, σ2) where σ = d(s, x)× e (2)

We do not apply positional noise to robots returning to the
central location point for the DDSA or CPFA. We assume
that the collection point is marked by a beacon following our
previous studies with iAnt hardware [20].

C. Experimental Setup

The problem domain for central place foraging algo-
rithms is target placements within a plane. Each problem
instance consists of a set of coordinates representing the
locations of targets. To be useful a search algorithm must
work effectively across a wide variety of potential target
configurations. We measure the performance of the DDSA
and CPFA by measuring target collection times over many
randomly chosen problem instances. While the DDSA is a
deterministic algorithm, its performance on any particular
problem instance varies according to the particular placement
of targets. Collisions between robots can also introduce non-
deterministic effects into the search process.

In our experiments, we place 256 targets in a 100m2

arena according to three random distributions 1) uniform, 2)

4432

partially clustered, and 3) clustered. The uniform distribution
places targets at all locations in the search arena with equal
probability. The partially clustered distribution follows a
power law with 1 cluster of 16, 4 clusters of size 64, 16
of size 4, and 64 single targets. The clustered distribution
consists of 4 target clusters with 64 targets per cluster. If a
cluster or target location is occupied a new uniform random
location is chosen. We choose the partially clustered dis-
tribution of targets as our default target distribution because
naturally occurring targets tend to occur in a variety of cluster
sizes [35].

All experiments last 30min, except experiments measur-
ing complete collection time, which run indefinitely. In all
figures 25 experimental runs contribute to each data point,
except in Figure 3 where we use 50 replicates.

IV. RESULTS

A. Performance

Uniform Partial Clustered Uniform Partial Clustered
0

0.25

0.5

0.75

1.0

F
ra

ct
io

n
 o

f
T

ar
g

et
s

DDSA CPFA

Fig. 3: Comparison of DDSA and CPFA performance for
3 target distributions. Experiments are 30min in a 100m2

search arena with 6 robots and without noise.

Our experiments show that the DDSA performs at least as
well as the CPFA in the 6 robot, no error case (Figure 3).
This confirms our expectation that the DDSA has desirable
search and collection properties. Beyond those already dis-
cussed (closest targets first, complete collection and minimal
oversampling), the DDSA always returns to the location at
which it last found a target. This is so that the search spiral
can be rejoined at the point it was interrupted, but it has
the useful side effect of sending robots back to clusters of
targets. The process of returning to the location of the last-
found target is called site fidelity, and is a common search
strategy in ants [36], [37]. This strategy is also used by the
CPFA.

The DDSA partitions the search space among searchers
equally after the 0th circuit. This is reflected in the order of
performance we observed in Figure 3. The uniform target
distribution results in an equal allocation of robots to the
target collection task, partially clustered less so, and the
clustered case least of all. The unequal allocation of robots

to targets results in a decrease in performance. Additionally,
when a cluster of targets is encountered collisions between
robots increase near the cluster.

Similarly, in the CPFA experiments uniform targets are
collected fastest, followed by partially clustered targets,
and clustered targets are collected slowest. This pattern is
reversed from Hecker and Moses [20], likely because that
prior work did not consider collisions. Once a cluster is
detected the CPFA can take advantage of it by recruiting
robots to that location, but the initial time to discover a
cluster, and the increase in collisions at clusters, offsets this
advantage.

B. Robustness

(a) Noise coefficient: e = 0.4 (b) Noise coefficient: e = 3.0

(c) Noise coefficient: e = 0.4 (d) Noise coefficient: e = 3.0

Fig. 4: Effect of positional noise on the DDSA and CPFA
search patterns. The DDSA is shown in panels (a) and (b)
and the CPFA in panels (c) and (d). Black dots are targets,
green and blue dots indicate the current location of robots
and lines are the paths taken by robots.

Degradation of the search pattern under positional noise
results in only modest decreases in performance. The number
of collected targets is reduced by only 15% between the error
free case and our maximum error case (Figure 5).

In the maximum error case the positional noise is substan-
tial. For example, a robot travelling 10 cm has destination
positional error with standard deviation 30 cm (Figure 4b).
This robustness to error is due to robots progressively
searching locations close to the collection point even with
positional noise. Additionally, positional error in one robot
may be compensated for by noise in adjacent robots. When
the swarm is large, tags that are missed by one robot that is
out of alignment with its spiral are likely to be picked up by
robots noisily following adjacent paths (Figure 4a).

4433

0 0.5 1 1.5 2 2.5 3

Noise Coefficient

0

0.1

0.2

0.3

0.4

0.5

0.6

F
ra

ct
io

n
 o

f
T

ar
g
et

s

Fig. 5: In green, DDSA performance scaling with increas-
ing error. Experiment time is 30min. Dashed line is an
exponential decay fit with R2 = 0.926. In blue, CPFA
performance scaling with increasing error. The best linear
fit has R2 = 0.004 indicating that the noise coefficient, e,
explains very little of the variance in performance. Circles
are means and bars are the 95% confidence intervals. We use
a partially clustered distribution of targets in a 100m2 arena.

The CPFA is also robust to error. Compared to the CPFA
without positional noise shown in Figure 2, search paths with
e = 0.4 are qualitatively unchanged in Figure 4c. In the
maximum error case, e = 3.0, shown in Figure 4d an increase
in path tortuosity is apparent. Noise in the CPFA does not
systematically decrease performance (Figure 5).

C. Complete Collection

The DDSA guarantees complete collection of targets
within the search spiral in the noise free case and as a result
performs complete collection tasks faster than the CPFA
(mean decrease in collection time is 59.2%). In the CPFA
the time to find uniform targets increases exponentially as
the number of remaining targets decreases [21]. However,
the time to complete collection scales linearly with the
number of targets. For each additional target the time for
DDSA collection increases by 10.67 s compared to 23.4 s
per additional target with the CPFA (Figure 6).

The 95% confidence interval is tight relative to the stochas-
tic CPFA, as expected for a deterministic algorithm.

D. Scaling with the Number of Robots

The DDSA outperforms the CPFA for swarms consisting
of between 1 and 15 robots. For swarms with between 20
and 30 robots DDSA performance drops below that of the
CPFA (Figure 7). The DDSA performance curve follows a
parabola reaching its maximum between 15 and 20 searchers.
Degradation of performance is due to crowding at the collec-
tion point (Figure 8). That crowding at the collection point is
the main driver for degradation in performance is supported
by our observation of linear scaleup when robots are not
required to return to the collection point (data not shown)
and in previous work [38].

50 100 150 200 250

Number of Targets

0

2000

4000

6000

8000

T
im

e
to

 C
o
m

p
le

te
 C

o
ll

ec
ti

o
n
 (

s)

DDSA

CPFA

Fig. 6: In green, with dashed fit line, time for the DDSA to
collect all targets vs. number of targets. The dashed line is the
linear fit with slope 10.67 seconds per target, R2 = 0.998.
In blue, with dotted fit line, time for the CPFA to collect all
targets vs. number of targets. Dotted line is a linear fit, slope
23.4 seconds per target, R2 = 0.968. The circles are means
and bars are the 95% confidence intervals. We use a uniform
distribution of targets in a 100m2 arena with 6 robots.

10 15 20 25 30
0

0.25

0.5

0.75

1.0

DDSA

CPFA

F
ra

ct
io

n
 o

f
T

ar
g
et

s

Number of Searchers
50

Fig. 7: In green, with dashed fit line, DDSA performance
scaling with the number of searchers. The dashed line is a
parabolic fit with R2 = 0.998. In blue, with dotted fit line,
CPFA performance scaling. The dotted line is a negative
exponential fit with slope with R2 = 0.922. Circles are
means and bars are the 95% confidence intervals. We use the
partially clustered distribution of targets in a 100m2 arena
with a 30min time limit.

In the CPFA we observe a negative exponential increase in
performance (Figure 7). It is possible that the CPFA is also
following a parabolic curve with an inflection point at a much
higher number of robots than in the DDSA. Lower levels
of congestion at the collection point are likely due to the
stochastic nature of the CPFA which reduces the likelihood
of robots contending for the same location at the same point
in time.

4434

Fig. 8: Crowding in the DDSA degrades performance. State
after 30min with 30 robots.

E. Worst Case Performance

Since the DDSA always collects items close to the col-
lection point first an adversary that placed all targets at
the edge of the search arena would force the DDSA to
maximise its search and collection time. For our examples
with a 100m2 arena, 6 searchers, 256 targets, a gap of 18 cm
and a robot moving at 16 cm s−1 it takes approximately 4 h
to collect all the targets, compared to the observed mean
time of approximately 1 h. Since the DDSA is a preplanned
deterministic algorithm, an adversary could force the DDSA
to maximise its collection time by placing all targets along
the spiral path of a single searcher. The CPFA, in contrast,
is a stochastic algorithm that adapts to the distribution of
targets. As such, design of a worst case scenario for the
CPFA is much more difficult.

F. Comparison to a Perfect Algorithm

We can calculate the performance of a hypothetical perfect
algorithm in which the location of all targets are known to the
swarm a priori. The expected distance from the collection
point p = (0, 0), to a uniformly distributed target, within the
100m2 square arena is, without loss of generality, the ex-
pected distance to a target, t = (x, y), in the arena’s positive
quadrant. Numerically solving the double integral over the
probability of each Euclidean distance, 1

52

∫ 5

0

∫ 5

0
d(p, t)dxdy,

gives an expected distance of 3.826m to each target. For
250 targets the perfect algorithm, neglecting collisions, will
collect all targets using a single robot in expected time
E [Ctime] =

250×2×3.826m
0.16m s−1 +250

(
π + π

2

)
s = 13 241 s, where

the first term is the linear travel time and the second is
the turning time. Therefore, in the 6 robot case complete
collection will take an expected 2207 s. The mean time taken
by the DDSA to collect 250 targets with 6 robots is 3447,

95% CI [3399, 3493] s, an increase of approximately 56.2%
over the theoretical minimum.

The mean distance from the centre of a square of width 10
to its perimeter is 5.74 [39]. Substituting this value for 3.826
in the expected time formula above yields 19 116 s in the
single robot case. So for 6 robots we have a collection time
of approximately 53min. This gives a worst case increase in
DDSA collection time over the perfect algorithm of 353%.

V. CONCLUSIONS

We show that desirable properties of the single agent
square spiral, extensively demonstrated in previous work, can
be extended to multiple robots. The DDSA has optimality
properties which make it ideal for use as a central place
foraging benchmark: guaranteed collection of nearest objects
first, complete collection, and minimal oversampling. Bench-
mark algorithms should provide an efficient and theoretically
tractable point of comparison for more complex algorithms.
By comparing the CPFA to the DDSA we have a better
understanding of the CPFA’s strengths and weaknesses.

Adaptive search patterns such as the CPFA take advantage
of information about target clusters. Doing so increases target
detection rates but does not minimise trip time. This is
highlighted by the relatively good performance of the DDSA
(Figure 3). This suggests that a modification to the CPFA, the
use of distance information when deciding whether a robot
should use a waypoint, could be beneficial.

While the DDSA is surprisingly resilient to error the CPFA
is even less affected (Figures 4c and 5). This suggests that
the DDSA can be an effective strategy even for robots with
limited ability to localise.

The DDSA solves the complete collection problem opti-
mally, in that there is no redundancy in the search pattern
and it guarantees collection of all targets within the spiral. In
the 6 robot case, the DDSA mean complete collection time
is only 56.2% greater than the theoretical perfect algorithm,
which has perfect prior knowledge of all target locations and
no collisions. In comparison the CPFA’s stochastic strategy
takes much longer to collect all targets; using the DDSA as
a benchmark provides a point of comparison that allows us
to quantify this difference (Figure 6).

Two factors make finding scalable solutions to central
place foraging difficult. Congestion at the central collection
point and the mean distance to the targets both grow with the
rate of target collection, which in turn grows with the number
of robots. However, the stochastic nature of the CPFA means
that it does not suffer as much as the DDSA from the central-
point collision bottleneck. This results in the CPFA outper-
forming the DDSA when the swarm size exceeds 20 robots
(Figure 7). The congestion in the beginning setup phase of
the DDSA (Figure 8) could be mitigated by staggering a time
delay when robots begin the spiral, or by moving directly to
their positions in circuit 0 without travelling to the centre
of the map first. Generalisation to multiple collection points
allows for more scalable solutions such as the multiple-place
foraging algorithm (MPFA) [40].

4435

The DDSA provides both theoretical and practical advan-
tages as a general search algorithm, central place foraging
strategy, and a benchmark. We expect this approach will find
applications in a wide variety of robot swarm tasks.

ACKNOWLEDGMENTS

We gratefully acknowledge funding from a James S.
McDonnell Foundation Complex Systems Scholar Award
and NASA MUREP #NNX15AM14A for the UNM NASA
Swarmathon. Thanks to Elizabeth Esterly for her video of an
ant performing a spiral. Reviewer comments and corrections
were invaluable.

REFERENCES

[1] W. Fink, J. M. Dohm, M. A. Tarbell, T. M. Hare, and V. R.
Baker, “Next-generation robotic planetary reconnaissance missions:
a paradigm shift,” Planetary and Space Science, vol. 53, no. 14,
pp. 1419–1426, 2005.

[2] T. R. Weber, “An Analysis of Lemmings: A Swarming Approach
to Mine Countermeasures in the VSW/SZ/BZ.,” tech. rep., DTIC
Document, 1995.

[3] H. Hu, J. Oyekan, and D. Gu, “A school of robotic fish for pollution
detection in port,” Biologically Inspired Robotics (Y. Liu and D. Sun,
eds.), pp. 85–104, 2011.

[4] A. Birk and S. Carpin, “Rescue robotics - a crucial milestone on
the road to autonomous systems,” Advanced Robotics, vol. 20, no. 5,
pp. 595–605, 2006.

[5] M. A. Goodrich, B. S. Morse, D. Gerhardt, J. L. Cooper, M. Quigley,
J. A. Adams, and C. Humphrey, “Supporting wilderness search and
rescue using a cameraequipped mini UAV,” Journal of Field Robotics,
vol. 25, no. 12, pp. 89–110, 2008.

[6] J. Love, W. Amai, T. Blada, C. Little, J. Neely, and S. Buerger,
“The Sandia architecture for heterogeneous unmanned system control
(SAHUC),” in Proc. SPIE 9464, Ground/Air Multisensor Interoper-
ability, Integration, and Networking for Persistent ISR VI, International
Society for Optics and Photonics, 2015.

[7] K. Tamura and K. Naruse, “Unsmooth field sweeping by Balistic ran-
dom walk of multiple robots in unsmooth terrain,” in Soft Computing
and Intelligent Systems (SCIS), 2014 Joint 7th International Confer-
ence on and Advanced Intelligent Systems (ISIS), 15th International
Symposium on, pp. 585–589, IEEE, 2014.

[8] A. F. T. Winfield, “Foraging robots,” in Encyclopedia of complexity
and systems science, pp. 3682–3700, Springer, 2009.

[9] C. W. Bac, E. J. Henten, J. Hemming, and Y. Edan, “Harvesting Robots
for Highvalue Crops: Stateoftheart Review and Challenges Ahead,”
Journal of Field Robotics, vol. 31, no. 6, pp. 888–911, 2014.

[10] S. Ramsey, “NASA Awards Grant to Manage Swarmathon Challenge.”
2015.

[11] J. L. Bentley, B. W. Weide, and A. C. Yao, “Optimal expected-
time algorithms for closest point problems,” ACM Transactions on
Mathematical Software (TOMS), vol. 6, no. 4, pp. 563–580, 1980.

[12] S. Burlington and G. Dudek, “Spiral search as an efficient mobile
robotic search technique,” in Proceedings of the 16th National Conf.
on AI, Orlando Fl, 1999.

[13] R. A. Baeza-yates, J. C. Culberson, and G. J. E. Rawlins, “Searching
in the plane,” Information and computation, vol. 106, no. 2, pp. 234–
252, 1993.

[14] E. Langetepe, “On the optimality of spiral search,” in Proceedings of
the twenty-first annual ACM-SIAM symposium on Discrete Algorithms,
pp. 1–12, Society for Industrial and Applied Mathematics, 2010.

[15] M. A. A. ElHadidy, “Optimal spiral search plan for a randomly located
target in the plane,” International Journal of Operational Research,
vol. 22, no. 4, pp. 454–465, 2015.

[16] H. M. A. Gabal and M. A. A. El-Hadidy, “Optimal searching for
a randomly located target in a bounded known region,” International
Journal of Computing Science and Mathematics, vol. 6, no. 4, pp. 392–
403, 2015.

[17] C. Pinciroli, V. Trianni, R. OGrady, G. Pini, A. Brutschy, M. Bram-
billa, N. Mathews, E. Ferrante, G. Di Caro, and F. Ducatelle, “ARGoS:
a modular, parallel, multi-engine simulator for multi-robot systems,”
Swarm intelligence, vol. 6, no. 4, pp. 271–295, 2012.

[18] J. P. Hecker, K. Stolleis, B. Swenson, K. Letendre, and M. E. Moses.
Evolving Error Tolerance in Biologically-Inspired iAnt Robots. In
Proceedings of the Twelfth European Conference on the Synthesis and
Simulation of Living Systems (Advances in Artificial Life, ECAL 2013),
pages 1025–1032, 2013.

[19] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm
robotics: a review from the swarm engineering perspective. Swarm
Intelligence, 7(1):1–41, 2013.

[20] J. P. Hecker and M. E. Moses, “Beyond pheromones: evolving error-
tolerant, flexible, and scalable ant-inspired robot swarms,” Swarm
Intelligence, vol. 9, no. 1, pp. 43–70, 2015.

[21] J. P. Hecker, J. C. Carmichael, and M. E. Moses, “Exploiting clus-
ters for complete resource collection in biologically-inspired robot
swarms,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2015.

[22] M. Keeter, D. Moore, R. Muller, E. Nieters, J. Flenner, S. E. Martonosi,
A. L. Bertozzi, A. G. Percus, and R. Levy, “Cooperative search with
autonomous vehicles in a 3d aquatic testbed,” in American Control
Conference (ACC), 2012, pp. 3154–3160, IEEE, 2012.

[23] A. M. Reynolds, A. D. Smith, R. Menzel, U. Greggers, D. R. Reynolds,
and J. R. Riley, “Displaced honey bees perform optimal scale-free
search flights,” Ecology, vol. 88, no. 8, pp. 1955–1961, 2007.

[24] F. Papi, Animal homing. Springer Science & Business Media, 2012.
[25] Y. B. Sebbane, Lighter than air robots: guidance and control of

autonomous airships, vol. 58. Springer Science & Business Media,
2011.

[26] A. Ryan and J. K. Hedrick, “A mode-switching path planner for UAV-
assisted search and rescue,” in Decision and Control, 2005 and 2005
European Control Conference. CDC-ECC’05. 44th IEEE Conference
on, pp. 1471–1476, IEEE, 2005.

[27] R. Baeza-Yates and R. Schott, “Parallel searching in the plane,”
Computational Geometry, vol. 5, no. 3, pp. 143–154, 1995.

[28] A. T. Hayes, A. Martinoli, and R. M. Goodman, “Swarm robotic odor
localization,” in Intelligent Robots and Systems, 2001. Proceedings.
2001 IEEE/RSJ International Conference on, vol. 2, pp. 1073–1078,
IEEE, 2001.

[29] O. Feinerman, A. Korman, Z. Lotker, and J.-S. Sereni, “Collaborative
search on the plane without communication,” in Proceedings of the
2012 ACM symposium on Principles of distributed computing, pp. 77–
86, ACM, 2012.

[30] M. Müller and R. Wehner, “The hidden spiral: systematic search
and path integration in desert ants, Cataglyphis fortis,” Journal of
Comparative Physiology A, vol. 175, no. 5, pp. 525–530, 1994.

[31] Z. B. Hao, N. Sang, and H. Lei, “Cooperative Coverage by Multiple
Robots with Contact Sensors,” in Robotics, Automation and Mecha-
tronics, 2008 IEEE Conference on, pp. 543–548, IEEE, 2008.n

[32] H. Skubch, Modelling and Controlling of Behaviour for Autonomous
Mobile Robots. Springer Science & Business Media, pp. 220–
224,2012.

[33] A. López-Ortiz and D. Maftuleac. Optimal Distributed Searching in
the Plane with and without Uncertainty. In International Workshop
on Algorithms and Computation, pages 68–79. Springer, 2016.

[34] M. R. Thoppian and R. Prakash. A distributed protocol for dynamic
address assignment in mobile ad hoc networks. IEEE Transactions on
Mobile Computing, 5(1):4–19, 2006.

[35] J. B. Dunning, B. J. Danielson, and H. R. Pulliam, “Ecological pro-
cesses that affect populations in complex landscapes,” Oikos, pp. 169–
175, 1992.

[36] B. D. Beverly, H. McLendon, S. Nacu, S. Holmes, and D. M. Gordon,
“How site fidelity leads to individual differences in the foraging
activity of harvester ants,” Behavioral Ecology, vol. 20, no. 3, pp. 633–
638, 2009.

[37] T. P. Flanagan, K. Letendre, W. R. Burnside, G. M. Fricke, and M. E.
Moses. Quantifying the effect of colony size and food distribution on
harvester ant foraging. PLoS ONE, 7(7), 2012.

[38] G. M. Fricke, J. P. Hecker, J. L. Cannon, and M. E. Moses. Immune-
inspired search strategies for robot swarms. Robotica, 34(08):1791–
1810, 2016.

[39] W. W. Johnson, A treatise on the integral calculus founded on the
method of rates, Wiley & sons, New York, pp. 224, 1907.

[40] Q. Lu, J. P. Hecker, and M. E. Moses. The MPFA: A Multiple-
Place Foraging Algorithm for Biologically-Inspired Robot Swarms.
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2016 (in press).

4436

