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Abstract16

Causal discovery tools enable scientists to infer meaningful relationships from observa-17

tional data, spurring advances in fields as diverse as biology, economics, and climate sci-18

ence. Despite these successes, the application of causal discovery to space-time systems19

remains immensely challenging due to the high-dimensional nature of the data. For ex-20

ample, in climate sciences, modern observational temperature records over the past few21

decades regularly measure thousands of locations around the globe. To address these chal-22

lenges, we introduce Causal Space-Time Stencil Learning (CaStLe), a novel meta-algorithm23

for discovering causal structures in complex space-time systems. CaStLe leverages reg-24

ularities in local space-time dependencies to learn governing global dynamics. This lo-25

cal perspective eliminates spurious confounding and drastically reduces sample complex-26

ity, making space-time causal discovery practical and effective. For causal discovery, CaS-27

tLe flexibly accepts any appropriately adapted time series causal discovery algorithm to28

recover local causal structures. These advances enable causal discovery of geophysical29

phenomena that were previously unapproachable, including non-periodic, transient phe-30

nomena such as volcanic eruption plumes. Regularities in local space-time dependencies31

are transformed into informative spatial replicates, which actually improves CaStLe’s per-32

formance when applied to ever-larger spatial grids. We successfully apply CaStLe to dis-33

cover the atmospheric dynamics governing the climate response to the 1991 Mount Pinatubo34

volcanic eruption. We provide validation experiments to demonstrate the effectiveness35

of CaStLe over existing causal-discovery frameworks on a range of geophysics-inspired36

benchmarks while identifying the method’s limitations and domains where its assump-37

tions may not hold.38

Plain Language Summary39

We introduce a new method for learning the dynamics of causal systems, that is,40

the physical rules that define a system’s behavior. While this task, causal discovery, is41

not new, existing tools are ill-suited for many large geophysics datasets. Current state-42

of-the-art approaches use statistical techniques to search for causal relationships between43

all aspects of a system, examining billions of possible causal effects, or simplifying the44

data by focusing on the most important variables. Instead of an exhaustive search or over-45

simplifying the data, we incorporate basic physical principles—requiring effects to be “lo-46

cal” and “uniform”—to massively simplify the causal discovery problem. We demonstrate47

that our approach can recover known geophysical dynamics by applying it to the 199148

Mt. Pinatubo eruption, validating its ability to uncover space-time causal structure from49

observational data.50

1 Introduction51

Explaining the causal dynamics that govern geophysical phenomena is paramount52

in the Earth sciences. Climate models, for example, critically depend on understanding53

both local and global causal pathways to model the complex Earth system. Understand-54

ing short- and long-term consequences of the Earth system’s behavior is essential for fu-55

ture model development, our scientific knowledge, and preparing for the future. More56

specifically, in atmospheric science, we know the initial state of specific wind modes, such57

as the quasi-biennial oscillation or the Brewer-Dobson circulation, dramatically affects58

the later evolution and impact of volcanic eruptions, major wildfires, or geoengineering59

efforts such as stratospheric aerosol injection (Hitchman et al., 1994; Jones et al., 1998;60

Aquila et al., 2014; Gray et al., 2018).61

Traditional statistical methodologies, while providing valuable insights, often fall62

short of capturing the complex causal relationships inherent in geophysical systems. Causal63

models are hard-won and often represent the culmination of many decades of research.64

Causal discovery tools aim to accelerate the discovery of these relationships using philosophically-65
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and statistically-rigorous techniques to separate predictable, but indirect, statistical re-66

lationships from direct causal connections. Causal discovery has been successful across67

the sciences, providing new understandings of climate, biological, genetic, neural, and68

other dynamical systems (Ebert-Uphoff & Deng, 2012; Sugihara et al., 2012; Neto et al.,69

2010; X. Zhang et al., 2011; Kamiński et al., 2001; Tsonis et al., 2017). However, apply-70

ing existing causal methods to space and time structured data remains limited due to71

the complexity and scale of such systems.72

This work presents a novel causal discovery methodology that overcomes these chal-73

lenges to recover networks describing local causal structures from gridded data. A fun-74

damental insight driving the present work is that in many complex systems, global phenomena—75

whether climate teleconnections, brain functional networks, or ecosystem dynamics—76

emerge from countless repeated and structured local interactions. We can better under-77

stand how complex global patterns arise by accurately capturing these foundational lo-78

cal structures.79

Today’s Earth science measurement and modeling capabilities provide a wealth of80

data for studying our planet’s complex dynamics. However, due to the immense com-81

plexity of these dynamics, simple analyses provide only a limited understanding of the82

data. Causal discovery tools offer the ability to understand finer mechanistic details via83

causal graphs’ simplicity, interpretability, and flexibility. Causal discovery is a field that84

utilizes algorithmic causal inference to identify causal models as dependencies between85

fields of interest, which are often represented as a directed acyclic graph (DAG). Causal86

graphs let us analyze the space-time evolution of fields of interest and causal discovery87

can estimate them without requiring hypothesized physical models. Insights gleaned from88

causal discovery can further inform physical models, validate simulations against obser-89

vational data, and identify future research questions.90

While causal discovery show considerable promise for addressing problems in the91

Earth sciences, the enormous size and scope of Earth science data have limited its ap-92

plications. For example, atmospheric data often contains hundreds of thousands of grid93

cells, each with several orders of magnitude fewer observations in time. That imbalance94

is one aspect of the curse of dimensionality (Bellman, 1957; Bühlmann & Geer, 2011),95

where high dimensionality relative to sample size challenges conventional statistical meth-96

ods and renders many forms of inference, including causal discovery, unreliable without97

dimensionality reduction. Despite these obstacles, causal discovery has been successfully98

applied in Earth science (Deng & Ebert-Uphoff, 2014; Runge et al., 2015; Capua et al.,99

2019, 2020; Nowack et al., 2020; Krich et al., 2020; Galytska et al., 2022; Tibau et al.,100

2022; O’Kane et al., 2024; Zhao et al., 2024), primarily via dimensionality reduction tech-101

niques to reduce the number of relationships to estimate. Those contributions identified102

teleconnection pathways to recover large, periodic climate modes and their effects. While103

a dimensionality reduction approaches can be practical, the analysis of local effects has104

been considered challenging and generally avoided due to the curse of dimensionality (Ebert-105

Uphoff & Deng, 2012; Runge et al., 2015; Nowack et al., 2020).106

In contrast to dimensionality reduction methods that marginalize large amounts107

of information, our work leverages the known locality in space-time systems to harness108

informative spatial replicates, i.e., repeating space-time relationships, without loss of lo-109

cal structural information, to identify local causal graphs. These advances enables us to110

approach problem classes in space-time systems that are typically intractable with prior111

art—both in terms of performance and algorithmic efficiency. We highlight two features112

of CaStLe that are useful contributions to causal discovery for geoscience problems: the113

ability to learn grid-level relationships instead of regional relationships from reduced di-114

mensional data (e.g. principal components or modes) and the ability to handle dynamic,115

advective processes.116
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Prior causal discovery work in Earth science has primarily focused on large-scale117

regional phenomena, such as the El Niño Southern Oscillation. These patterns, gener-118

ally consistent in their spatial distribution and periodic in nature, are well suited to global119

dimensionality reduction techniques, which project fields onto a small number of modes.120

While global teleconnections are crucial research areas, they ultimately emerge from lo-121

cal causal interactions. However, dimensionality reduction sacrifices critical local infor-122

mation, making it impossible to see how local structures give rise to global patterns. CaS-123

tLe reduces problem complexity in a fundamentally different way: By identifying and124

leveraging the repeating local structures, it preserves the relationships at the grid level125

while remaining applicable to spacetime systems that exhibit multiscale organization.126

Typical dimensionality reduction approaches to causal discovery decrease the data127

space from many grid cells to a few regional modes and uses many observations, result-128

ing in a little p, large n problem, where p is the number of variables and n is the num-129

ber of data points. In contrast, phenomena that evolve dynamically in space or occur130

rarely, like volcanic plumes, are harder to analyze and often have few data points. Such131

problems are large p, little n. CaStLe makes causal discovery of the space-time evolu-132

tion of these phenomena tractable for the first time by leveraging the gridded sample space,133

avoiding the marginalization that reduces many grid cells into a single time series per134

regional mode, and recovering interpretable space-time causal structures.135

This work’s primary case study is the 1991 Mount Pinatubo eruption. It injected136

a plume of aerosols into the stratosphere, which then advected around the tropical zone137

before dispersing northward and eventually diffusing around the globe. This example demon-138

strates the characteristics of the unique, transient problem class, has an established re-139

search history, and exhibits dynamics verifiable with a known causal driver: stratospheric140

wind.141

We introduce a new Earth system causal network, the causal stencil graph, which142

describes local space-time causal structures between adjacent locations, and a new es-143

timation methodology, Causal Space-Time Stencil Learning (CaStLe), that is capable144

of describing local mechanistic pathways in space and time between grid cells. Grid-level145

causal discovery in high dimensional space-time data has been previously considered in-146

tractable due to the curse of dimensionality (Nowack et al., 2020; Tibau et al., 2022).147

Though demonstrated with climate model output, our methodology applies to any space-148

time system where local physical interactions drive global behavior, including fluid dy-149

namics, biological pattern formation, or material transport processes.150

CaStLe combines modern causal discovery with classical physics-based principles,151

namely spatial and temporal locality, to accurately perform causal discovery on large spa-152

tial domains. Our novel local-coordinate-space projection does not marginalize any data153

points, such that local causal information is lost, which is a common sacrifice of other154

space-time dimension reduction techniques such as weighted averaging or principal com-155

ponent analysis (PCA). This preservation of local information is crucial because global-156

scale phenomena in complex systems emerge from interactions at smaller scales. By map-157

ping these foundational causal pathways, CaStLe provides insights not just into imme-158

diate local effects but also into how these effects propagate and combine to create larger-159

scale patterns.160

With these advances, CaStLe achieves remarkable improvements over state-of-the-161

art space-time causal discovery approaches. CaStLe is a flexible framework that can be162

implemented by adapting any given time series causal discovery algorithm to the sten-163

cil approach. Our approach performs excellently in high-dimensional data regimes, mak-164

ing it capable of describing the local space-time evolution of transient phenomena trans-165

porting over many grid cells.166
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The Earth system is rich with transient phenomena examples including forest fires,167

monsoons, coastal erosion, salt or freshwater incursions, inter-tropical convergence zone168

shifts, and atmospheric rivers. Aside from elucidating underlying dynamics, CaStLe can169

be used to identify and characterize causal change points, such as polar vortex disrup-170

tion and ocean current disruptions. Additionally, understanding these local dynamic struc-171

tures can give further insights into the construction and evolution of important macro172

phenomena such as the El Niño Southern Oscillation, the Quasi-Biennial Oscillation, and173

the Madden-Julian Oscillation. Table 1 in the Appendix summarizes the capabilities of174

CaStLe and their relevance to specific Earth science applications. These capabilities ad-175

dress analytical needs that have been challenging or infeasible with previous causal dis-176

covery approaches.177

The remainder of this paper is organized as follows: Section 2 provides a brief back-178

ground on causal discovery and its use in Earth science; Section 3 describes our case stud-179

ies in the HSW-V and E3SMv2-SPA models and available data; Section 4 explains our180

novel CaStLe methodology; Section 5 demonstrates CaStLe’s ability to recover known181

volcanic aerosol evolution in climate models of different resolution; and finally, Section182

6 illustrates CaStLe’s computational, and performance improvements over the state-of-183

the-art methods with synthetic data experiments.184

Contributions185

We introduce the CaStLe approach to causal discovery from space-time data. CaS-186

tLe allows the discovery of causal structures in high-dimensional spatial data, avoiding187

the need for dimension reduction techniques that dominate causal discovery of space-188

time data, e.g., the work by Nowack et al. (2020). By working in the raw data space, CaS-189

tLe’s causal graphs are inherently interpretable and do not require mapping structures190

from the dimension-reduced space back onto the original data. We provide a theoret-191

ical analysis of CaStLe, showing that it has attractive computational and statistical prop-192

erties and, rather remarkably, that CaStLe’s accuracy actually increases on larger spa-193

tial domains. We apply CaStLe to two simulations of a major volcanic eruption and demon-194

strate how it can be used to better understand how stratospheric winds mediate the cli-195

mate response to volcanic activity. Our first study is of a relatively simplified model to196

validate the methodology with proxy ground-truth. In our second study, we consider a197

more realistic model and find that CaStLe still provides consistent and valuable results,198

demonstrating its value for realistic atmospheric dynamics. Finally, extensive numeri-199

cal experiments measure the advantages of CaStLe and demonstrate: i) significantly im-200

proved performance over existing causal discovery methods on a set of vector autoregres-201

sive (VAR) benchmarks; and ii) the use of CaStLe to identify the governing dynamics202

of Burgers’ non-linear partial differential equation (PDE). While our case studies uti-203

lize climate model data, the methodology is domain-agnostic and can be applied to any204

high-dimensional space-time system meeting our locality and stationarity assumptions.205

2 Background: Causal Discovery and Formal Mathematical Scope206

Here, we provide a brief overview of the causal discovery field and the mathemat-207

ical scope of our contributions. For a broader overview of causal discovery and its ap-208

plications to Earth science, see the reviews by Glymour et al. (2019), Runge, Bathiany,209

et al. (2019), and Runge et al. (2023), and the book by Peters et al. (2017). Addition-210

ally, we outline the mathematical constraints and assumptions that define where our method-211

ology can be applied in the class of space-time systems.212

Causal discovery is a field of causal inference that seeks to recover causal dynam-213

ics from observational data. In the parlance of causal inference, observational data is data214

that is passively observed rather than data to which treatments (e.g. manipulations) have215

been applied. Observational data can be natural (e.g. physical observations) or synthetic216
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(e.g. simulations). The present work exclusively pertains to untreated data, so we will217

use observational in this way.218

While correlation does not imply causation, causal discovery is built upon Reichen-219

bach’s common cause principle (Reichenbach, 1956): if two quantities are correlated then220

one must cause the other or there is a third causal driver of the two. Causal discovery221

generally has two output classes: a causal graph/network (Pearl, 1995) or a structural222

causal model (Pearl, 1998). We focus on causal graphs, which are networks of variables223

(nodes) connected by edges that denote a causal dependence. Causal graphs can be more224

appealing than structural equation models because they are human-interpretable and225

do not require prior knowledge of the underlying causal function. In the study of Earth226

science, causal graphs may often be preferred to visually describe space-time relation-227

ships on the globe. Our contribution produces a novel type of causal graph, the causal228

space-time stencil, which is detailed in Section 4 and an example of which is in panel 4229

of Figure 2.230

2.1 Related Work: Causal Structure Learning231

In recent decades, causal inference has been developed into a rigorous mathemat-232

ical framework (Rubin, 1974; Pearl, 2000; Pearl et al., 2016). These developments made233

algorithmic discovery of causal structures from observational data possible (Spirtes et234

al., 1993; Peters et al., 2017; Glymour et al., 2019). Causal structures can be modeled235

with two common forms: structural causal models (SCMs) and causal graphs. Both de-236

scribe a functional relationship between a variable Xj and its causal parents, denoted237

P(j).238

For example, if Xi causes Xj , then it is said Xi is a parent of Xj and i ∈P(j).239

Formally, Peters et al. (2017, p.83) defines an SCM as follows:240

A structural causal model (SCM) consists of a collection of d (structural)241

assignments242

Xj := fj(XP(j), ηj), j = 1, . . . , d,

where P(j) ⊆ {1, . . . , d}\{j} are called parents of Xj: and a joint distribution243

Pη = Pη1,...,ηd over the noise variables, which we require to be jointly indepen-244

dent; that is Pη is a product distribution [in our notation].245

An SCM admits a unique causal graph, where Xj → Xi if j ∈ P(i) and j ̸→246

Xi if j ̸∈ P(i). While discovery of an SCM requires hypothesizing all fj ’s, discover-247

ing a causal graph can be done without knowing the exact functions. Because a causal248

graph does not imply a specific function between variables, each may imply multiple SCMs.249

This does limit some of the inferential power of causal graphs, in exchange for more ver-250

satility.251

Algorithms for discovering causal graphs have two primary classes: constraint-based252

and score-based algorithms. Constraint-based methods use statistical tests to compute253

conditional independence relationships between sets of variables. Once a set of indepen-254

dence relationships is established, it utilizes causal assumptions and reasoning to con-255

nect the variables with directed links. Score-based approaches are similar but use score256

optimization to determine causal dependence between variables. Both constraint-based257

and score-based algorithms produce causal graphs because they operate on graphical struc-258

tures and independence relations rather than the explicit parametric relationships be-259

tween variables required to specify a complete SCM.260

Early causal discovery algorithms developed as two parallel traditions. The tem-261

poral Granger causality (Granger, 1969) methodology was an early innovation using time262
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series data to determine if the past history of X aids the prediction of Y better than Y ’s263

history alone. If so, then X Granger causes Y . Independently, the constraint-based PC264

algorithm (named for its authors Peter and Clark) (Glymour & Scheines, 1986) and FCI265

(Spirtes & Glymour, 1991) developed out of the inductive causation (Pearl & Verma, 1992)266

framework and the earlier SGS algorithm (Spirtes & Glymour, 1991), significantly im-267

proving the efficiency of causal discovery using statistical structures in observed data.268

In time, other structural algorithms developed, such as LiNGAM (Shimizu et al., 2006),269

utilizing asymmetries in non-linear and non-Gaussian data for inferences, and NOTEARS270

(Zheng et al., 2018), a graph score-optimization-based method. Eventually, these two271

traditions converged as structural methods were developed to take advantage of tempo-272

rally ordered data. Key advances included: hMRF (Liu et al., 2010), which uses hidden273

Markov models for estimation and is grounded in Granger causal structures, PCMCI (Runge,274

Nowack, et al., 2019) (and related PCMCI+ and LPCMCI), which improves PC to han-275

dle autocorrelated dependencies better, and DYNOTEARS (Pamfil et al., 2020), which276

extends the NOTEARS method to time series. More recently, a third tradition, causal277

representation learning, developed out of machine learning (ML) to leverage causal rea-278

soning in ML models (Schölkopf et al., 2021). While still a developing field, it shows par-279

ticular promise for estimating relationships in the presence of latent confounding.280

The directed nature of time provides a powerful asymmetry to leverage, often suf-281

ficient to overcome the difficulties of autocorrelation, automatically orienting discovered282

relationships in time. In contrast, spatial data lacks an obvious uniform directional struc-283

ture and poses challenges for causal discovery. As discussed in Section 1, while some ap-284

proaches have incorporated domain-specific spatial constraints for point-measurement285

networks, none have developed a generalizable framework that leverages fundamental286

physical principles of locality to enable scalable causal discovery in high-dimensional grid-287

ded space-time systems.288

2.1.1 Causal Discovery in Earth Science289

We present a brief review of causal discovery for Earth science to position CaStLe290

within the literature. Please also see the extensive reviews by Runge et al. (2023) and291

Ali et al. (2024).292

Ebert-Uphoff and Deng (2012) were the first to apply a causal discovery algorithm,293

PC-stable (Colombo & Maathuis, 2014), to the climate science domain. They were able294

to find a grid-cell-level causal teleconnection network in 50 year daily geopotential height295

data using the PC algorithm. Ebert-Uphoff and Deng (2014); Deng and Ebert-Uphoff296

(2014) further explored application requirements and climatological interpretations of297

the geopotential height analysis. In each paper, they note grid challenges related to the298

high expense of many grid cells, aggregation effects, and cell spacing. The first paper lim-299

its the number of grid cells to 800, while the subsequent analyses limited grid cells to300

200 to minimize computational costs. While their results are compelling, they use ex-301

tensive decadal data and recover patterns common to all 50 years. The fundamental dif-302

ference between our work and Ebert-Uphoff and Deng’s work is that they recover causal303

graphs from recurring atmospheric phenomena with sufficiently large datasets on rela-304

tively coarse-grained grids, whereas CaStLe recovers networks of isolated phenomena with305

many more grid cells and many fewer time samples per cell.306

Runge et al. (2015) introduced an alternative approach to causal discovery of space-307

time Earth science data. They reduced the dimensionality with varimax-rotated prin-308

cipal component analysis prior to applying the causal discovery algorithm, producing a309

graph relating discrete, potentially remote, regions. Their causal graph is most similar310

to a teleconnection network between large areas on the globe. Nowack et al. (2020) uti-311

lized that framework to evaluate CMIP5 models. Particularly of note, they point out the312

challenges and strengths of Ebert-Uphoff and Deng (2012)’s grid-cell-level approach, “...313
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while an analysis at the grid-cell-level is more granular which, however, carries the chal-314

lenges of higher dimensionality, will have a strong redundancy among neighbouring grid315

cells, and grid-level metrics will require handling varying spatial resolution among data316

sets.”317

Tibau et al. (2022) built on the dimensionality reduction approach, augmenting it318

to output grid-cell-level networks. They specifically delineate mode-level (dimensional-319

ity reduction or cell aggregation) and grid-level causal discovery. Their augmentation320

is called Mapped-PCMCI, which first applies dimensionality reduction, then computes321

a mode-level causal network with PCMCI, and finally maps the grid cells within the modes322

to each other using the network previously constructed. Their resulting network is one323

consisting of edges between grid cells, but the method assumes that cells within modes324

are fully connected, i.e., each 6 cell is dependent on all of its neighbors. In contrast, our325

work specifically seeks inter-cell spatial relationships. Finally, they also describe the fail-326

ure of a traditional causal discovery approach for grid-cell-level data, “[if] we apply PCMCI327

directly at the grid-level, the low power of this high-dimensional and redundant estima-328

tion problem (see Section 2.2.2) leads to most links being missing.”329

Boussard et al. (2023) and Brouillard et al. (2024) developed the Causal Discov-330

ery with Single-parent Decoding (CDSD) algorithm within the causal representation learn-331

ing framework and applied it to the climate science field. Like CaStLe, CDSD performs332

well in high-dimensional data settings but through a different mechanism. It performs333

dimensionality reduction by learning latent variables and enforcing a "single-parent" con-334

straint where each grid cell belongs to exactly one latent factor. This naturally clusters335

grid cells into coherent, often contiguous regions and enables the discovery of causal re-336

lationships between these larger-scale patterns. In contrast to CaStLe’s grid-level struc-337

ture learning, CDSD identifies broader teleconnection pathways between regional climate338

modes. Thus, while CaStLe preserves the original grid structure to capture fine-grained339

causal dynamics, CDSD abstracts to a higher level by mapping the native grid space to340

an identifiable latent representation before performing causal discovery.341

Several studies have addressed local-scale phenomena. Pfleiderer et al. (2020) ap-342

plied causal discovery to identify precursors to seasonal hurricane frequency. They uti-343

lized the precursors to inform a predictive model. Polkova et al. (2021) identified local344

drivers of marine cold-air outbreaks in the Barents Sea. These demonstrate that exist-345

ing causal discovery approaches can be valuable for seasonal and sub-seasonal phenom-346

ena. However, both marginalized large regions prior to analysis, reducing the space’s di-347

mensionality, and did not evaluate the space-time evolution of phenomena nor grid-level348

dynamics.349

There are some examples of causal discovery algorithms leveraging spatial infor-350

mation. Zhu et al. (2016) developed pg-Causality that applies space-time pattern min-351

ing and a Gaussian Bayesian Network to seek local dependencies in the space-time prop-352

agation of air quality data. Sheth et al. (2022) developed STCD for understanding hy-353

drological systems. They constrained the discovery of spatial structures by only allow-354

ing higher elevation nodes to be parents of lower elevation nodes because water follows355

the gravity gradient. While both cleverly use mined or known spatial structure to in-356

form their causal discovery, they are both limited to use in sparse point-measured data357

from static base stations rather than gridded data. Further, these methods enforce con-358

straints as filtering mechanisms, whereas CaStLe actively leverages spatial structure to359

enhance statistical power. Neither address the scalability challenges in high-dimensional360

gridded data.361
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2.1.2 Parallel Approaches in Neuroscience: Causal Discovery for High-362

Dimensional Spatial-Temporal Data363

Other scientific domains face similar challenges with high-dimensional space-time364

data. Neuroscience, for example, needs to study mechanisms in brain interactions, and365

fMRI images may contain thousands to millions of pixels. The anatomy of the brain also366

exhibits locality constraints. Ramsey (2014) made computational optimizations to the367

Greedy Equivalence Search algorithm, including sparsity constraints and limiting the dis-368

tance of potential parents, to recover graphs with millions of nodes. Saetia et al. (2021)369

marginalized regions of interest in the brain using spatial averaging and then applied the370

PCMCI algorithm to construct causal graphs. There is a common interest in recover-371

ing graphs of high-dimensional grid-level data throughout the sciences. Developing more372

tools that enhance the estimation and interpretability of causal graphs in these spaces373

will help advance our understanding of space-time structures across the sciences.374

What is clear from prior work is that grid-level analyses are challenging, both sta-375

tistically and computationally, due to how many grid cell dependencies need to be es-376

timated, the enormous number of observations needed, and the redundant information377

content of nearby cells. As we present in the following sections, CaStLe adds to the lit-378

erature as it overcomes the statistical and computational limitations of grid-level anal-379

ysis by leveraging the known physical structure of spatial information to produce inter-380

pretable graphs describing local causal structures.381

2.2 PDE-Like Systems382

We seek to perform causal discovery from space-time data governed by consistent383

physical laws. As detailed in Section 4, CaStLe operates via two phases. The first re-384

structures the given space-time data into a lower-dimensional local neighborhood space385

without marginalization or loss of any data points; the second is the causal discovery step.386

This section details the assumptions required for efficient use of spatial replicates that387

enable CaStLe’s first phase, scalability properties, performance in high-dimensional set-388

tings, and interpretability. We note that the assumptions necessary for the second phase389

will be inherited from our meta-algorithm’s chosen causal discovery method. In general,390

they will be the causal Markov condition, faithfulness, and often causal sufficiency, which391

we define formally in Appendix A.2.392

We take PDE-like models as our starting point, and assume that all behavior in393

the given space are driven by a fixed set of dynamics that apply at infinitesimal time and394

spatial scales. Specifically, we assume that, for data observed in discrete space and time,395

the evolution of a single grid cell is controlled only by the values of its immediate spa-396

tial neighbors at the previous time step. Using causal discovery, we seek to determine397

which neighbors have a causal impact on a given grid cell and the direction of that re-398

lationship. Our analytical framework has similarities to the sparse identification frame-399

work initially developed by Brunton et al. (2016), though our approach builds upon causal400

discovery rather than sparse regression. Because our approach can use non-linear con-401

ditional independence tests, we can avoid the difficult dictionary construction step as-402

sociated with sparse regression methods.403

In contrast to causal discovery methods, other current research also focuses on ap-404

proximating ordinary differential equations or PDE-like systems with operator learning405

approaches, such as operator neural networks (Li et al., 2020; Pathak et al., 2022; Hart406

et al., 2023). These Fourier Neural Operators (FNO) focus on generating accurate mod-407

els of the PDE-like evolution of key variables over time and space. Their assumptions408

are rooted in several of the same fundamental physical principles of how PDEs propa-409

gate effects in space and time as CaStLe: locality in space and time and spatial station-410

arity. While CaStLe is not meant to be a predictive model, it captures important rela-411
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tionships between grid cells in an interpretable fashion, providing insights into the un-412

derlying causal structures.413

2.3 Causal Discovery of Physical Dynamics: Dynamical Constraints414

We state here four key assumptions that capture what we describe as a PDE-like415

system Xt:416

T1) Temporal Locality: for any τ ̸= 1, Xi,t−τ ̸→ Xj,t for any spatial coordinates417

(i, j)418

T2) Temporal Causal Stationarity: the dynamics governing the evolution of Xt do not419

change over time. That is, Xi,t−1 → Xj,t ⇔ Xi,t−1+τ → Xj,t+τ for any time420

offset τ .421

S1) Spatial Locality: if (i, j) are not neighbors (in a problem-specific sense) then Xi,t1 ̸→422

Xj,t2 for any t1, t2.423

S2) Spatial Causal Stationarity: the dynamics governing the evolution of Xt do not424

change over space. That is, Xi,t−1 → Xj,t ⇔ Xi+s,t−1 → Xj+s,t for any spa-425

tial offset s.426

Here, ̸→ denotes the absence of a direct causal relationship between two variables.427

Therefore, if an SCM exists for a given system, then it will have a functional shape428

constrained by our assumptions: Xt = f(Xt−1, ηt), for some vector of noise, ηt. In the429

context of an SCM, the constraints are: temporal locality (T1) adds lagged relationships430

between parent and child variables; spatial locality (S1) restricts possible parents to those431

in the spatial neighborhood of each variable (grid cell), that is, fi is only a function of432

the neighborhood of i (fi depends only on XP(i)); and temporal/spatial causal station-433

arity (T2 & S2) require that there be only one function, f , for all space and time in the434

window/region of analysis.435

Building on physical principles, Assumption T1 implies that causal dependencies436

follow the “arrow of time” while S1 disallows “action at a distance.” Assumptions T2 and437

S2 serve to ensure that there is a consistent causal structure to target. Assumption S1438

further requires that fi is only a function of the neighborhood of i (fi depends only on439

XP(i)). We refer the reader to the book by Peters et al. (2017) for a more detailed dis-440

cussion of how SCMs can be used to model physical systems.441

We deliberately chose lag-1 temporal relationships in assumption T1 because they442

reflect fundamental physical principles: In the discretized form of PDEs, each element443

depends on the future state of the immediate past of its neighboring elements. The sym-444

metry of the radius-1 neighborhood in assumption S1 and the single lag constraint in as-445

sumption T1 captures the essential causal dynamics in physical processes when tempo-446

ral and spatial data resolutions are appropriately balanced.447

While not descriptive of all possible systems, we assert these locality and station-448

arity assumptions are descriptive of any system governed or modeled after PDEs, cel-449

lular automata (Bhattacharjee et al., 2020), or Tobler’s First Law of Geography (Miller,450

2004; Walker, 2022). These assumptions reflect fundamental principles of locality and451

consistency that apply across numerous domains, from fluid dynamics to reaction-diffusion452

systems. However, for these to hold in practicality, one must also assume sufficient data453

is available to characterize locality and dynamics are smooth and non-turbulent, rela-454

tive to the analysis frame. These assumptions imply that there is an optimal balance be-455

tween temporal and spatial resolution sufficient to impose space-time locality. The ex-456

act value of this scaling is problem-dependent, as more rapidly evolving systems require457

higher temporal resolution, and we do not explore it further here. However, we note that458
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similar concerns are well-studied in the design of numerical differential equation solvers459

where spatial and temporal discretizations must be chosen suitably consistently.460

Section 4 and Appendix A detail how these assumptions are essential for our method-461

ology, CaStLe, and discuss their limitations. Section 4.6 discusses strategies for manag-462

ing those limitations. While CaStLe’s framework assumptions (T1, S1, T2, S2) enable463

efficient use of space-time samples, the algorithm adapted for CaStLe’s parent-identification464

phase will have additional causal assumptions.465

Interestingly, CaStLe’s spatial locality assumption (S1) creates an environment where,466

when properly implemented, causal sufficiency can be satisfied by construction. When467

we focus on learning only the parents of the center cell while including all potential spa-468

tial neighbors in the analysis, we automatically satisfy causal sufficiency for that spe-469

cific node if S1 holds. While reliant on S1 holding, this is significant because causal dis-470

covery is notoriously the most challenging causal discovery assumption to ensure in real-471

world settings (Spirtes et al., 1993; Raghu et al., 2018). As we discuss in Section 4.5, suf-472

ficiency may be relaxed depending on which causal discovery algorithm is adapted for473

the parent-identification phase. However, satisfying it by construction may enable im-474

plementation choices with fewer compromises.475

In the following sections, we discover grid-cell-level causal graphs under these five476

assumptions. Assumptions T1 and S1 allow us to significantly reduce the scope of the477

problem, as there are only 9 possible parents of a grid cell in 2D (8 neighbors and itself).478

Assumptions T2 and S2 suggest that we only need to determine a single local causal graph,479

because spatial stationarity allows us to extend it to the entire domain.480

3 Data: The 1991 Mt. Pinatubo Eruption481

Mount Pinatubo’s eruption in 1991 was a massive, natural intervention in the cli-482

mate, with effects that had a relatively high signal-to-noise ratio. The event launched483

20 Tg of SO2 gas into the atmosphere (Guo, Bluth, et al., 2004; Guo, Rose, et al., 2004;484

Kremser et al., 2016). The sulfate aerosols that resulted from these gases remained in485

the stratosphere for approximately two years, leading to stratospheric warming of ∼ 1.5K486

and surface cooling of 0.2-0.5K (Dutton & Christy, 1992; Labitzke & McCormick, 1992;487

Parker, Wilson, Jones, Christy, & FOLLAND, 1996; Soden et al., 2002). This aerosol488

injection has recently been the object of much study, with some authors suggesting it489

as a natural proxy for proposed stratospheric aerosol injection (SAI) responses to global490

climate change (Trenberth & Dai, 2007). Recent work continues to characterize the na-491

ture of the response to the Pinatubo eruption, with the timing and spatial structure of492

the surface response being essential factors to inform policy decisions (Weylandt & Swiler,493

2024).494

Large volcanoes can impact climate quantities, such as surface temperatures, on495

timescales from months to years (Parker, Wilson, Jones, Christy, & Folland, 1996; Robock,496

2000; Timmreck, 2012; Marshall et al., 2022). However, to evaluate whether CaStLe could497

recover the initial advection dynamics of volcanic aerosols, we focused on the period shortly498

after the eruption that includes stratospheric aerosol transport. The recent paper by Marshall499

et al. (2022) indicates: “Although global-scale climatic impacts following the formation500

of stratospheric sulfate aerosol are well understood, many aspects of the evolution of the501

early volcanic aerosol cloud and regional impacts are uncertain.” This initial spread of502

aerosols in the stratosphere is a geophysical process, falling between synoptic weather503

patterns and longer-term impacts.504

We utilized models of the event, combining stratospheric aerosol and wind data,505

as acase study to illustrate the analysis possible with CaStLe. Figure 1 is a high-level506

illustrative schematic of the this work’s key ideas: We collect gridded space-time data,507

e.g. aerosol optical depth (AOD) measurements, and apply it to CaStLe to learn a causal508
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1. Extract Gridded Space-Time Aerosol Data

Time Series Representation
of Gridded Data

2. Apply CaStLeEarth System
Model Output

...
Estimated

Causal Stencil

3. Validate Against
Stratospheric Winds

Wind Fields CaStLe Output

U/V Wind
Components

Aerosol
Data

Analysis Region

Figure 1: Schematic overview of the key elements of CaStLe and the process followed in
its application to Mount Pinatubo’s eruption of stratospheric aerosols. Beginning with
Earth system model output, Step 1. is to collect stratospheric wind and aerosol data.
Step 2. is to apply our novel CaStLe meta-algorithm to the aerosol data to obtain a
causal graph describing the space-time evolution of the aerosols. Finally, we use the wind
fields to help validate the causal graph results in Step 3.

stencil graph. We then map the stencil to the original grid space. Finally, we compare509

the data to ground-truth. To be clear, the ground-truth in our later case studies is a proxy,510

referring to the models’ understood underlying dynamics, not the true realization of AOD511

in Earth’s atmosphere or a mathematical representation of the dynamics. In Section 5,512

we compare to the wind fields carrying AOD as a proxy ground-truth. In Section 6, we513

compare CaStLe results from synthetic data to mathematically-known ground-truth.514

3.1 Held-Suarez-Williamson-Volcanic515

For our first case study, we utilized the limited-variability ensemble approach of516

the Held-Suarez-Williamson-Volcanic (HSW-V) model (Hollowed et al., 2024). HSW-517

V is an atmosphere-only model built in the Department of Energy’s Energy Exascale Earth518

System Model version 2 (E3SMv2) (Golaz et al., 2022). HSW-V does not set out to repli-519

cate the historical Mt. Pinatubo eruption or any other, but uses the Mt. Pinatubo’s erup-520

tion characteristics “to produce a plausible realization of a volcanic event, simulated with521

a minimal forcing set” (Hollowed et al., 2024). The model was developed specifically to522

facilitate basic research of attribution methodologies by providing realistic source-to-impact523

pathways of eruption quantities. We use this model to create a realistically complex dataset524

of stratospheric aerosol and wind dynamics with a clear ground-truth to demonstrate525

the capabilities of CaStLe and the correctness of its results.526

We gathered aerosol optical depth (AOD), sulfate, and zonal (U) and meridional527

(V) wind fields for analysis. Only AOD is provided to CaStLe, while the sulfate, U, and528

V wind components are used for validating results, as detailed in Section 5. AOD is a529
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derived quantity that measures the extinction of a beam of light through the atmosphere530

by atmospheric aerosols, i.e., it describes the amount of light occluded by atmospheric531

particles. One of the simplifying aspects of HSW-V is that all aerosol particles originate532

from SO2 gas ejected by the volcano; this avoids confusing signals from other sources,533

such as smoke and dust, in the atmosphere.534

The data collected from the HSW-V ensemble run are on a 2◦ grid with 6-hourly535

average observations. We selected AOD in grid cells between −20◦ to 40◦N and −120◦
536

to 140◦E, comprising 3,900 grid cells. We used the first three weeks post-eruption for537

our analysis.538

3.2 Mt. Pinatubo in E3SMv2-SPA539

For our second case study, we considered a simulation of the Mt. Pinatubo erup-540

tion in the fully coupled E3SMv2 model augmented with Stratospheric Prognostic Aerosol541

capability (E3SMv2-SPA) as detailed and validated by Brown et al. (2024). E3SMv2-542

SPA includes atmosphere, land, ocean, sea ice, land ice, and river components. AOD,543

U, and V wind fields are analogously collected from this dataset. However, in this model,544

aerosols are a natural feature, thus complicating the analysis of aerosol optical depth.545

Data were collected on a daily temporal resolution for a 1◦ spatial grid. We selected546

grid cells between −30◦ to 60◦N and −180◦ to 180◦E. Analysis covered the first six months.547

Because this data has a coarser temporal resolution and finer spatial resolution than our548

study of HSW-V, we coarsened the CaStLe spatial grid to a 3◦ grid, resulting in 3,600549

total grid cells. This helps ensure that the motion of aerosol particles between grid cells550

is measured within the one-day sample period.551

4 Methodology: Causal Discovery with CaStLe552

4.1 Notation553

We first introduce notation used in the remainder of this paper. Data is observed554

on a spatial domain D, which we typically take to be a finite subset of the real plane,555

R2. The causal structure generating this data can be represented by a directed acyclic556

graph G = (V, E), where V = D. CaStLe represents local causal structure with a sten-557

cil, which we identify as a graph G̃ = (Ṽ, Ẽ) in a reduced coordinate space (|Ṽ = 9|).558

In both the original and reduced spaces, let P(v) be the potential causal parents of v559

and let P(v) be the actual causal parents of v. We take D to be points on a regular grid560

of size N×N , observed over T time steps, giving data X ∈ RN2×T . When transformed561

to the reduced space used by CaStLe, the resulting data matrix will be denoted X̃ ∈562

RT (N−2)2×9. Quantities estimated from data are denoted with a hat, e.g., P̂(v). We pro-563

vide additional background on the interpretation of the causal graphs G, G̃ in Section 2.1564

and formally specify the mapping between X and X̃, or equivalently, between V and Ṽ,565

in Section 4.3.566

4.2 Causal Space-Time Stencil Learning567

We now introduce the CaStLe paradigm for the causal discovery of local space-time568

dynamics. Under our assumptions, CaStLe identifies a sketch of the local causal dynam-569

ics, which we call a stencil. This stencil can then be used to construct the causal graph570

for the entire system (S2). The stencil is estimated in a reduced coordinate space, where571

we only examine the direct neighbors of a given grid cell (S1). We can pool information572

across time (T2) and space (S2) in order to estimate the stencil accurately, and the prob-573

lem is tractable because we only seek causal parents which are local in time (T1). As574

we will see, this combination of reduced search space and pooled information provides575
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a powerful approach to causal discovery and enables accurate causal discovery from high-576

dimensional grid-cell-level data.577

A C DB

1

3

2

4 1 32 4 1 32 4 1 32 4

Figure 2: Illustration of CaStLe (Algorithm 1) as applied to space-time data on a 4×4
grid. Step A (§4.3.1): for every interior grid cell, its 3×3 (Moore) neighborhood is se-
lected. (Note, all four 4×4 grids in the second panel are identical.) Step B (§4.3.1): Data
are represented in a reduced coordinate space obtained by appending time series from
each neighborhood according to its position relative to the neighborhood’s center. Step
C (§4.3.2): during the Parent Identification Phase (PIP), a causal discovery algorithm is
used to estimate the parents of the center time series; the resulting graph forms the causal
stencil. Step D (§4.3.3): the estimated stencil is expanded to its equivalent representation
in the original space. Note that each time chunk (colored intervals in the center panel) in
the reduced space corresponds to an interior grid cell of the original data, and that each
edge in the final causal graph reflects to a stencil edge learned during the PIP. See §4.3
for details.

Having motivated the CaStLe approach to causal discovery from space-time data578

in Section 2.2, we now state it formally as Algorithm 1, describe its computational steps,579

and then analyze its statistical and computational properties.580

4.3 The CaStLe Meta-Algorithm581

4.3.1 Steps A-B: Projection to a Reduced Coordinate Space582

CaStLe begins by transforming the given data from its original domain into a re-583

duced coordinate space that captures the underlying causal dynamics’ locality and spa-584

tial homogeneity. In this transformation, all data points are preserved, i.e., no marginal-585

ization or truncation occurs. This process is represented as Steps A and B in Figure 2586

and Algorithm 1. In Step A, the local 3×3 (Moore) neighborhood of each interior cell587

is selected, and each cell is labeled by its location relative to the center cell (S, NW, E, etc.).588

This process creates (N − 2)2 sub-views in Xi ∈ RT ×9.589

In Step B, these views are concatenated along the time dimension to create a re-590

duced coordinate space data matrix X̃ ∈ RT (N−2)2×9. Note, when concatenating the591

subviews, data are aligned by their coordinates relative to the neighborhood center so592

that, e.g., data from all NW cells are aligned upon concatenation, even though they orig-593

inally come from different spatial locations. Although this transformation results in spe-594

cific time series segments appearing in multiple reduced space cells, these repetitions do595

not eventually create spurious dependencies in the causal stencil, as CaStLe only seeks596

lag-1 dependencies. The repeated segments are well-separated in the temporal dimen-597

sion, and no chunks appear in different cells in the same interval.598

We depict this process on a 4×4 grid in the first half of Figure 2. In Step A, the599

four interior cells are sequentially highlighted, and their local neighborhoods are extracted,600

which are depicted in boxes colored according to the center used. In Step B, the local601
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Algorithm 1 CaStLe for Space-Time Data in 2D (D ⊆ R2)

Inputs:
• Parent-Identification Phase subroutine PIP
• Gridded space-time data X ∈ RT ×N2

1. Step A: Extract 3× 3 Moore Neighborhoods
• For each interior point in the original space, construct local view of the data Xi =

[X·P(i)] ∈ RT ×9

2. Step B: Construct Reduced Space Data Matrix

X̃ = [X⊤
1 X⊤

2 . . . X⊤
(N−2)2 ]⊤ ∈ RT (N−2)2×9

3. Step C: Perform Parent-Identification in Reduced Space

PIP(X̃) = Ẽ = (P̂(C)× R9) ⊆P(C)× R9

4. Step D: Expand Stencil Graph to Original Coordinate Space:
• E = ∅ ⊆ V2 × R
• For each (p, w) ∈ Ê :

E = E ∪ {(p(v), v, w) for v ∈ V}

Outputs:
• Graph Stencil, Ẽ
• Estimated Causal Graph, G = (V, E)

data views are concatenated to form one set of time series, with each temporal chunk602

reflecting the color of the center cell of the underlying data view.603

4.3.2 Step C: Parent-Identification Phase604

CaStLe next examines the reduced coordinate space data representation, X̃, to iden-605

tify the stencil of the local causal dynamics. This is done by applying an augmentation606

of an arbitrary time series causal discovery algorithm to identify the parents of the cen-607

ter cell, C. We emphasize that we only seek the parents of C, not a full causal structure,608

in this step and refer to it as the Parent Identification Phase (PIP). Under assumption609

S1 (locality), all parents of C are present at this step, satisfying causal sufficiency, en-610

suring more accurate estimation of the causal stencil. By contrast, while the data of the611

parents for the exterior cells, e.g. W, is included in the reduced data space matrix, X̃,612

it spreads across multiple columns, and accurate parent identification is not possible. The613

output of this process is a set of (up to) 9 weighted edges, corresponding to the parents614

of C (the eight neighboring cells and C itself).615

We depict the PIP in Step C of Figure 2, where two parents of C are identified: W,616

which has a positive dependence on C, and SW, exhibiting negative dependence. Note that617

while the PIPs we implemented in testing—see Section 6.1—had no trouble with the seams618

connecting each time chunk in the reduced space, we propose an improved testing im-619

plementation in Appendix E to alleviate potential statistical testing issues.620
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4.3.3 Step D: Graph Reconstruction in the Original Space621

Finally, CaStLe uses the stencil constructed in Step C to reconstruct the causal graph622

in the original data space, in a process that essentially reverses Steps A and B. Specif-623

ically, for each edge identified in Ẽ , corresponding edges are added to grid cell in the orig-624

inal domain. We depict this in the final step of Figure 2 where the stencil is repeated625

throughout the entire 4×4 space, copying the two parents of C identified in Step C, to626

create a causal graph in the original space. Note also that we use the stencil to identify627

parents for both interior and boundary cells, omitting edges that go “off-grid” when ap-628

plying the stencil to boundary cells.629

4.4 Theoretical Properties630

CaStLe has many advantages over classical causal discovery algorithms in gridded631

space-time settings. By reducing the causal discovery problem to identifying the causal632

parents of the center cell (C) in the reduced space, CaStLe achieves significant improve-633

ments in both the computation necessary to infer the causal graph and the statistical634

quality of that graph. As previewed in Section 2.2, the PIP’s focus on identifying only635

the parents of the center cell creates an important connection to the causal discovery as-636

sumption of causal sufficiency. Because we include all spatial neighbors (as defined by637

our locality assumption S1) in the conditioning set, all potential parents of the center638

cell are present in the analysis. If our spatial locality assumption holds, causal sufficiency639

is automatically satisfied within each local stencil analysis. This represents a key advan-640

tage of the CaStLe framework - while the Markov condition and faithfulness remain nec-641

essary assumptions for the PIP algorithm, our implementation leverages spatial struc-642

ture to ensure causal sufficiency by construction.643

Below, we briefly outline the theoretical implications and their contributions to CaS-644

tLe’s remarkable performance and algorithmic improvements. Their derivation, a deeper645

analysis, and a discussion on graph estimation asymptotic consistency are provided in646

Appendix B. We discuss CaStLe’s asymptotic consistency in Appendix C, which shows647

that CaStLe converges on the correct causal stencil as grid size increases, given a PIP648

consistent in increasing time samples. These properties illustrate the mathematical jus-649

tification for CaStLe’s empirical correctness and improvement over the state of the art650

shown in the following sections.651

CaStLe yields significant improvements to both time complexity, a measure of an652

algorithm’s computation time as it scales with input size (e.g., number of time steps, graph653

nodes), and statistical complexity, a measure of estimation performance given larger sam-654

ple sizes. Following the complexity analysis of Kalisch and Bühlmann (2007), we show655

that traditional causal discovery approaches are bounded by O(np32p) = O(T (N2)32N2) =656

O(TN62N2), for T time samples and N ×N = N2 grid cells. Since CaStLe computes657

on the smaller reduced coordinate space, and only seeks causal parents of one node, rather658

than parents of all nodes, several terms become constants, resulting in O(np32p) = O(T (N−659

2)2×93×29) = O(TN2). CaStLe’s computational complexity is O(TN2), a major im-660

provement over existing approaches. For more details on this derivation, see Appendix661

B.1. By leveraging locality and spatial replicates, CaStLe identifies causal structure for662

the entire graph (O(N4) possible edges) in N2 time. Kalisch and Bühlmann (2007, Ap-663

pendix B) show that the probability of the PC algorithm incorrectly estimating the true664

graph is bounded by ≈ O(N2N2), whereas we find that CaStLe’s error probability scales665

as ≈ O
(

N2T
eN2T

)
. From this, as the grid size grows larger, we see PC is less likely to es-666

timate the correct causal graph, while CaStLe is more likely to estimate the correct graph.667

Furthermore, both of these effects are exponential, implying significant performance dif-668

ferences even on moderately sized graphs; this change from a regime of exponential de-669

cay to super-exponential growth in graph recovery performance makes local causal graph670
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recovery feasible, finally enabling the tools of causal discovery to scalably explore grid-671

level Earth science dynamics in commonly high-dimensional settings.672

4.5 Methodological Limitations673

CaStLe’s assumptions may pose challenges in some domains of interest, and vio-674

lations of these assumptions can affect the CaStLe output. For example, large-scale ho-675

mogeneity can be difficult to achieve in geosciences, which is the primary rationale for676

the spatial-blocking strategy that we implement for our application in Section 5. Local-677

ity assumptions (T1 & S1) create a framework where the causal Markov condition can678

be effectively applied to local structures, while causal stationarity assumptions (T2 &679

S2) create consistency in these structures across space and time. However, the PIP al-680

gorithm we use within CaStLe additionally requires standard causal discovery assump-681

tions, particularly the causal Markov condition and faithfulness, which is a separate non-682

trivial assumption. We list causal sufficiency as an assumption, however, if the others683

hold then it follows that all of the causal parents of the stencil’s center are in its imme-684

diate neighborhood, so sufficiency is satisfied by construction. Alternatively, causal suf-685

ficiency may be relaxed if the chosen PIP is an algorithm that does not rely on sufficiency,686

such as the FCI algorithm (Glymour et al., 2019). As such, violations of CaStLe’s as-687

sumptions relate directly to violations of the causal Markov condition, faithfulness, and688

causal sufficiency. Both Spirtes et al. (1993, p. 29) and Runge (2018) discuss assump-689

tion violations in causal discovery and some examples of how they manifest in resulting690

graphs. We have included a more detailed discussion on each assumption and their lim-691

itations in Appendix A.692

4.6 Strategies for Addressing Limitations693

To address the limitations of CaStLe’s assumptions, several practical strategies can694

be employed. One effective approach is the use of spatial blocking to create subdivisions695

where dynamics are more uniform, thus mitigating the violation of spatial causal sta-696

tionarity (S2). The selection and size of these blocks are highly domain-dependent and697

can be guided by subject matter expertise. An automated approach may be sufficient698

for certain dynamics, such as stratospheric dynamics, but more manual approaches may699

be necessary for surface-level dynamics where blocks are chosen based on topological as-700

sumptions. In specific areas of interest, blocks can be manually created to avoid topo-701

logical boundaries such as coastlines, rivers, and mountain ranges, ensuring that the as-702

sumptions of spatial homogeneity are better satisfied.703

Additionally, strategies such as variograms can be used to test for spatial statis-704

tical stationarity, providing heuristics for effective blocking. In future work, an iterative705

block size estimation approach could be considered. Varying the block size serves as a706

form of stability check, a technique widely applied in ML to ensure robustness of discov-707

eries to parameter choices and modeling assumptions (Allen et al., 2023). However, it708

is important to note that there may not always be a single optimal block size due to the709

complex nature of spatial dynamics. Instead, there may be a range of valuable block sizes710

depending on the needs for analysis and the limitations of the setting. Because CaStLe711

is data efficient, it may be better to tend towards smaller blocks, which are more likely712

to be homogeneous, but possibly at the cost of some interpretability.713

Deep learning and space-time feature engineering approaches may be fruitful di-714

rections for future research on automated block-identification. Methods such as δ-MAPS715

(Fountalis et al., 2018), feature extraction with convolutional neural networks (Nukavarapu716

et al., 2023), and spatiotemporal cluster analysis (Davis et al., 2025) are strong start-717

ing points. These computational approaches could automate the identification of opti-718

mal spatial blocks, reducing reliance on manual delineation and subject matter exper-719
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tise while preserving the statistical properties necessary for valid causal discovery with720

CaStLe.721

By employing these strategies and acknowledging their limitations, the robustness722

and applicability of CaStLe in various domains can be significantly enhanced, allowing723

for more accurate causal discovery in complex space-time systems. In general, more data724

at higher spatial and temporal resolutions will make satisfying the assumptions easier.725

The appeal of CaStLe is when one is interested in small-scale local dynamics, it is prefer-726

able to analyze raw gridded data directly, because marginalization can introduce statis-727

tical artifacts.728

Appendix I provides an empirical investigation of how violations of each assump-729

tion affect CaStLe’s performance when applied to our E3SMv2-SPA case study. Our anal-730

ysis reveals that CaStLe is surprisingly robust to moderate assumption violations. While731

violations of spatial and temporal causal stationarity (particularly with overly large blocks732

or extended time intervals) introduce more false positives and reduce interpretability, CaS-733

tLe often still identifies key true causal pathways. This robustness to moderate assump-734

tion violations further expands the practical utility of CaStLe in realistic Earth science735

applications where perfect adherence to assumptions is rarely possible.736

5 Results: Discovering Atmospheric Dynamics in Global Climate Mod-737

els738

As described in Section 3, we applied CaStLe to output of the Held-Suarez-Williamson-739

Volcanic atmosphere model, tuned to accurately reproduce the observed Pinatubo re-740

sponse (Hollowed et al., 2024), and the E3SMv2-SPA model including the eruption. In741

this section, we describe how we applied CaStLe to these case studies and present the742

results.743

5.1 Validation with HSW-V744

We first note important implementation considerations, particularly how CaStLe’s745

assumptions are satisfied. In general, if assumptions T1, T2, S1, and S2 are uncertain,746

either because of data availability or dynamical instability, then assumptions can be ver-747

ified using subject matter expertise. In this study of Mt. Pinatubo, we describe how we748

carefully managed each assumption prior to applying CaStLe.749

In order to be sure CaStLe’s assumptions of temporal locality, temporal causal sta-750

tionarity, and spatial locality (T1, T2, and S1) held in the dataset’s 2◦ grid resolution751

(corresponding to approximately 214 km at 15 degrees N), we used atmospheric wind752

speeds at the time of the eruption, which were recorded at 25 m/s on average at 30 hPa;753

cf. Figure 1 in Thomas et al. (2009). That speed translates to a theoretical maximal aerosol754

travel distance of 540 km over a 6-hour period, meaning aerosols should move fast enough755

to traverse one 2◦ grid cell per time step.756

Spatial causal stationarity, assumption S2, is indeed violated considering the globe757

holistically. We resolved this challenge by using a spatial blocking strategy to create sub-758

divisions in which dynamics were more uniform, and applied CaStLe within each sep-759

arately. As noted in Section 4.6, the selection of blocks and their size is a potential chal-760

lenge and is highly domain-dependent. We conducted a sensitivity analysis of block sizes,761

which is presented in Appendix H, and determined that dynamics were consistent in var-762

ious of block sizes. We chose a middle size, 20◦×20◦, for this analysis to balance more763

nuanced outputs (smaller sizes) with less risk of false positives (larger sizes). This case764

study was selected for its relatively simple advective dynamics to clearly validate CaS-765

tLe and demonstrate its results in an atmospheric setting. We observe that stratospheric766

winds vary smoothly and slowly, without hard boundaries, which enables us to use a reg-767
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ular grid of blocks. Other settings, such as surface level analyses, the blocking strategy768

will certainly require special treatment to avoid analysis across hard dynamical bound-769

aries, such as coastlines and mountain ranges. In Appendix H, we also demonstrate that770

blocking alone is not sufficient for non-CaStLed approaches to succeed.771

8.5 days post 
eruption

14.75 days 
post eruption

21 days post 
eruption

20°S

40°N

20°S

40°N

20°S

40°N

120°W 140°E0°

Figure 3: Application of CaStLe-PC-Stable to HSW-V simulation of the 1991 Mt.
Pinatubo eruption. The stencils estimated by CaStLe (white) capture the underlying
high-altitude wind fields (green) using only satellite-measured AOD, with near perfect ac-
curacy in high aerosol regions (red-orange). Autodependencies are shown with black nodes
where grid cells cause themselves, and gray nodes where there is no autodependence. All
links represent a six hour time lag, the time resolution of the HSW-V dataset. On longer
horizons (bottom row), CaStLe is able to recover equatorial wind currents as far away as
South America, half-way around the world from Mt. Pinatubo (white triangle). CaStLe
accurately identifies the prevailing westerly atmospheric winds because it was able to
identify the space-time dependence between neighboring grid cells. Additional details are
given in Section 5.

We applied CaStLe within each block separately and visualized the resulting causal772

stencil for each grid cell in Figure 3. In Appendix H, we provide a brief sensitivity anal-773

ysis of specific block sizes and also demonstrate that blocking alone is not sufficient for774

non-CaStLed approaches to succeed.775

We chose CaStLe’s PIP to be the PC-Stable-Single algorithm because in our val-776

idation experiments in Section 6.1.2, we found it to be the marginally more effective PIP.777

However, those experiments showed any tested PIP algorithm is effective. PC-Stable-778

Single is the PC-Stable causal discovery algorithm (Colombo & Maathuis, 2014) adapted779

to find the causal parents of only one node; its pseudocode is provided in Appendix L.780

Specific CaStLe parameterizations are given in Appendix G. In Appendix J, we present781

similar results using DYNOTEARS for CaStLe’s PIP.782
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Our proxy ground-truth in this case study was stratospheric winds that cause sus-783

pended aerosols to advect through space. We display dominant wind fields throughout784

the space to validate the resulting graphs. Our dataset included wind components in 72785

pressure levels in the HSW-V dataset, so we display column-averages of the levels at the786

levels where volcanic sulfate was most prevalent. Specifically, we chose pressure levels787

containing more than 5 µg of sulphate Kg air, which were between ∼ 6-114 hPa. With788

this, we effectively captured the stratosphere and 56% of all sulfate aerosols in all atmo-789

sphere levels. By comparing winds in at the stratospheric levels where most of the sul-790

fur was present, we can directly compare CaStLe’s discovery of AOD’s space-time evo-791

lution to wind data in the same locations.792

Comparing the wind and recovered stencils in Figure 3, it is clear to see that CaS-793

tLe is able to accurately reconstruct the prevailing stratospheric winds using only AOD794

observations. As these wind fields are the key drivers of aerosol dispersal, it is clear that795

CaStLe can accurately capture the dynamics dictating the spatial pattern of the Pinatubo796

response. The CaStLe stencils best capture the underlying wind fields when AOD lev-797

els are high. When there are few particles in a region, it is challenging to determine wind798

by solely observing dispersal patterns. We also observe a zonal (East-West) pattern driv-799

ing the aerosol dispersion, with Pinatubo aerosols transported nearly fully around the800

equator within 3 weeks, while meridional (North-South) dispersion taking much longer.801

This alignment between CaStLe-derived causal structures and observed wind patterns802

demonstrates the method’s effectiveness in reconstructing the physical mechanisms driv-803

ing aerosol transport, particularly in regions with sufficient particle density to enable clear804

detection of dispersal trajectories.805

5.1.1 Comparative Analysis of CaStLe Versus Traditional Approaches806

on HSW-V807

The current state-of-the-art causal discovery methods cannot tractably approach808

this study of Mt. Pinatubo’s aerosol short-term evolution. As described in Section 1, di-809

mensionality reduction techniques commonly used to make them tractable are suitable810

for spatially static, periodic space-time patterns. However, they are not good solutions811

for studying a dynamic, transient pattern because modes derived from those techniques812

are space-timely invariant. Moreover, they are meant to capture large-scale teleconnec-813

tions, rather than local dynamics that eventually give rise to global phenomena such as814

teleconnections. For a detailed demonstration of why dimensionality reduction approaches,815

such as PCA and PCA-varimax, are insufficient for capturing local causal structures in816

space-time systems like volcanic eruption plumes, see Appendix F.817

Traditional approaches attempted without dimensionality reduction suffer from the818

curse of dimensionality when applied to short-term global-scale phenomena because there819

are more grid cells than temporal observations. They also struggle to identify local con-820

nections in the massive search space they seek, where every grid cell may be dependent821

on any other grid cell; i.e., they are not constrained by local causal structure. Finally,822

their efficiency scales poorly as the grid size gets larger, requiring a lot of time to exe-823

cute on relatively small grids. We present specifics below and discuss time complexity824

in depth in Section 4.4 and Appendix B.1.825

Here, we demonstrate the disparity in performance between traditional approaches826

and CaStLe for our HSW-V case study using the PC algorithm. The reasons for the dis-827

parity are explored in Sections 1 and 2. Because PC did not terminate within 48 hours828

on the full spatial region studied in Section 5.1, we restricted the analysis space the area829

between 20◦ to 50◦N and 55◦W to 120◦E in the first 8.5 days after the eruption. On the830

2◦ grid, the given space is equivalent to a 35×35 grid, or 1,225 grid cells. Since tempo-831

ral observations were 6-hourly, there were 34 time series samples per grid cell.832
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(a) PC algorithm results (b) CaStLe results

Figure 4: Causal maps inferred from the PC algorithm applied naively to all grid cells
and CaStLe’s equivalent results immediately to the west of Mt. Pinatubo; a 35 × 35 grid
between −20◦ to 50◦N and 55◦ to 125◦E in a 8.5 day span after the eruption. All links
represent a six hour time lag, the time resolution of the HSW-V dataset. As expected, PC
struggled with the high dimensionality and the discovered dependencies do not conform to
the ground-truth understanding that aerosols advected towards the west. It also fails to
identify local dynamics, instead drawing most connections over great distances. The PC
analysis was computed in 729 minutes on 1,600 grid cells, while the CaStLe analysis was
computed in 0.46 seconds.

Figure 4 shows the results of the PC causal algorithm and CaStLe-PC-Stable ap-833

plied to a large section of grid cells for the HSW-V problem. Figure 4a illustrates that834

PC is incapable of reconstructing a graph with any meaningful physical interpretation.835

There are some local dynamics found, but they are dominated by the many links across836

disparate locations. PC was implemented here with the partial correlation conditional837

independence test, a test alpha-value of 0.00001, and a p-value threshold of 0.05 to re-838

move links below that threshold in the final graph. P-values were corrected using the839

Benjamini-Hochberg procedure prior to final thresholding.840

In Figure 4b, CaStLe was applied to 10◦-by-10◦ blocks, rather than the 20◦-by-20◦
841

blocks in Figure 3. The smaller block size enables more link density and nuanced results,842

with the possibility of more mistakes. In this illustration, we chose to display the sten-843

cils mapped back to the original space for each block to compare to PC more fairly and844

demonstrate how much more sparse CaStLe’s results are. We found that CaStLe was again845

able to recover the westward aerosol transport from Mt. Pinatubo. Because HSW-V only846

models aerosols from the volcano, there is little to no aerosol signal outside the plume,847

and results in these areas will be less reliable.848

Additionally, the run-time of the PC algorithm is demonstrably poorer than CaS-849

tLe. The PC algorithm experiment in Figure 4a PC took 65 minutes to execute for a 35×35850

grid size. In contrast, the CaStLe experiment in Figure 4b completed all blocks serially851

in 0.46 seconds on the same data. Further, for each of the panels in Figure 3, CaStLe852

computed the 39 stencils for the 3,900 grid cells in a total of 10 seconds. These empir-853
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ical data points are explained by CaStLe’s improved theoretical properties, as detailed854

in Section 4.4 and Appendix B.855

5.2 Extending to More Complexity: E3SMv2-SPA Modeled Aerosols856

Given the intended simplicity of the HSW-V model, we also evaluated a simula-857

tion of the Mt. Pinatubo eruption in E3SMv2-SPA. More complex graphs arise with a858

more complex model, providing an opportunity for more nuanced analysis and discov-859

ery, but with a higher chance of false positives and false negatives. E3SMv2-SPA is a fully860

coupled model, so AOD results from many sources including the volcanic eruption and861

Saharan dust. As such, we expect results to be somewhat noisier, however, as we demon-862

strate below, CaStLe is still able to identify important features of transport. Because863

of this additional complexity, we focus on CaStLe as an exploratory tool and leave ad-864

ditional analysis to future work. However, even with the added complexity, CaStLe can865

obtain compelling results consistent with dominant stratospheric winds as well as the866

dynamics discovered in our study of HSW-V.867

We used 15◦ spatial blocks so that CaStLe operates on a 5×5 grid space per block.868

This size strikes a balance in the trade-off that a smaller block-grid enables more nuance869

in the final output, and larger block-grids take advantage of more spatial replicates to870

multiply sample size. We chose to study the eruption in two distinct 20-day intervals span-871

ning a six month period to understand the changing evolution of the plume.872

Similarly to HSW-V, we utilize the U and V wind fields to visually validate the CaS-873

tLe results. In this case, we did not average over multiple altitudes, instead opting to874

simply use the 50 hPa wind fields; this altitude was shown in Brown et al. (2024, Fig-875

ure S6) to contain significant levels of the sulfate aerosols.876

Figure 5 depicts the results of our experiment on E3SM. Again, we applied CaStLe-877

PC-Stable to construct causal stencils for each given spatial block. We selected two in-878

tervals of interest from our results to show here. Day 15 is June 15, 1991, the day of the879

eruption, so the top row of Figure 5 is the first 20 days after the eruption. The bottom880

row was selected to illustrate later dynamics when aerosols have circumnavigated the trop-881

ical zone and more northward advection is present. Days 175-195 are November 22 to882

December 12, 1991, a little over six months after the eruption.883

In the more challenging setting of the fully-coupled E3SMv2-SPA model, our re-884

sults in the first weeks are still generally consistent with those in HSW-V presented in885

Section 5.1, showing that CaStLe is largely robust to greater complexity. We note that886

visually identifying the sulfate aerosol plume is much more difficult in this case as the887

background AOD is quite strong. A solution may be to apply CaStLe to AOD anoma-888

lies (computed by subtracting grid cell long-term AOD means from the signal in the anal-889

ysis period), thus potentially removing background variability from the analysis. How-890

ever, our goal in this work is to present CaStLe as applied to raw data to illustrate what891

it can and cannot accomplish in complex, heterogeneous settings.892

Regardless, we observe that tropical westward advection is present throughout both893

studied time periods, but more complexity is present in other regions, in part due to the894

background AOD. Six months later, the aerosols and winds are in a different regime. We895

observe northward and southward causal structures in the northern latitudes matching896

dominant wind fields in the area, with CaStLe stencils still consistent in the tropics. Ad-897

ditionally, CaStLe recovers dynamics moving aerosols northwards above central Asia and898

southwards through western North America. Causal structures are recovered more of-899

ten and more accurately where stronger winds coincide with more aerosol presence, build-900

ing a map of significant aerosol movement. A more complex model and smaller block sizes901

illustrate more nuanced dynamics, and there is more to learn from these; however, we902

leave deeper atmospheric dynamics analysis to future work.903
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Figure 5: Application of CaStLe-PC-Stable to E3SMv2-SPA simulation of the 1991 Mt.
Pinatubo eruption. The stencils estimated by CaStLe (white) capture the underlying
high-altitude wind fields (green) using only total aerosol optical depth (AOD). Autode-
pendencies are shown with black nodes where grid cells cause themselves, and gray nodes
where there is no autodependence. All links represent a one day time lag, the time resolu-
tion of the E3SMv2-SPA dataset. The heatmap depicts AOD from any source at 50 hPa.
The top panel depicts learning from the first 20 days after eruption, which began on day
15. The bottom panel depicts learning approx 6 months after the eruption over a 20-day
time period. In the more challenging setting of the fully-coupled E3SMv2-SPA model, our
results in the first weeks are still generally consistent with those in HSW-V presented in
Section 5.1, showing that CaStLe is largely robust to greater complexity. In the bottom
panel, the aerosols and winds are in a different regime. CaStLe stencils are still consis-
tent in the tropics and now begin to recover dynamics pushing aerosols northwards above
central Asia and southwards through western North America. A more complex model
and smaller block sizes illustrate more nuanced dynamics, and there is more to learn from
these, however, we leave deeper atmospheric dynamics analysis to future work.

6 Validation and Benchmarking904

In this section, we demonstrate the effectiveness of the CaStLe approach to space-905

time causal discovery, highlighting its ability to identify structure in low-signal and data-906

sparse regimes. We first demonstrate the benefits the CaStLe approach can provide to907

any causal discovery algorithm using a synthetic linear-Gaussian dynamics benchmark;908

we then apply CaStLe to an important non-linear PDE problem, showing that we can909

determine the underlying advective forcing.910

6.1 Evaluating CaStLe: A Comparative Analysis911

We demonstrate the effectiveness of CaStLe using a set of local interaction mod-912

els (LIMs), building upon the comparison framework introduced by J. J. Nichol et al.913

(2023). In summary, we defined a stencil for each experiment that dictates how each grid914

cell depends on its nine neighbors (including itself). A LIM is a special case of an SCM,915

which simulates the evolution of a gridded space by computing the current state of each916
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grid cell based on a predefined function of the historical states of its neighbors. In the917

linear case, this is most simply accomplished with vector autoregression (VAR) models,918

where the coefficient is sparse, only containing nonzero entries where a desired depen-919

dence exists between neighbors. The function is defined by a linear function of coeffi-920

cients in the given stencil. Our results appear in Figure 6, which shows that CaStLe pro-921

vides significant improvements in graph recovery regardless of the causal discovery al-922

gorithm used in the parent identification phase.923

6.1.1 Data: Benchmark Construction924

In order to compare different causal discovery algorithms with a common set of bench-925

marks, we begin by generating coefficient matrices parameterizing spatially homogeneous926

and statistically stationary VAR(1)s that satisfy our key assumptions S1 and S2. We gen-927

erate coefficient matrices for these VARs, M̃ , using the following sampling scheme:928

1. Generate a random 3 × 3 local dynamics matrix, M , with d non-zero elements,929

one of which is the central element (autocorrelation). Each of the d non-zero el-930

ements, {ai}d
i=1, have a random value 1.0 ≥ coefficienti ≥ s∗.931

2. Expand M to M̃ on a grid of size N ×N (cf. Step D of Algorithm 1 or Figure932

2-2 of J. J. Nichol et al. (2023))933

3. If |λmax(M̃)| ≥ 1, scale M̃ by |λmax(M̃)|.934

4. If m < s∗ ∀m ∈ M̃ , reject, else accept.935

where |λmax(M̃)| is the maximum absolute eigenvalue of M̃ , which when above 1.0 in-936

dicates the system is numerically unstable (Strang, 2016, p.307). We note that this pro-937

cess is essentially an accept-reject scheme used to sample from the set of statistically sta-938

tionary & spatially homogeneous VARs on a 2D grid with minimum signal strengths s∗ ≥939

0.1 and fixed sparsity levels in the range d ∈ {1, 2, . . . , 9}. After each M̃ is generated,940

we create a single realization, using standard Gaussian noise applied independently, cell-941

wise at each time step.942

6.1.2 Method Comparison: Highlighting CaStLe’s Strengths943

On each realization, we apply one of three causal discovery algorithms, in both CaS-944

tLed and non-CaStLed form: i) the PC algorithm of Spirtes and Glymour (1991) as adapted945

to time series by Runge, Nowack, et al. (2019, Algorithm S1 with q = 1); ii) PCMCI, an946

autocorrelated time series extension of PC developed by Runge, Nowack, et al. (2019);947

and iii) the DYNOTEARS approach of Pamfil et al. (2020), itself a time series adaption of948

the NOTEARS approach of Zheng et al. (2018). We additionally compare each of these against949

a simple sparse VAR approach, where we estimate VAR coefficients directly using or-950

dinary least squares (OLS) and truncate coefficients with magnitude less than s∗; this951

approach is not necessarily causal, but it is the exact model of our data generating pro-952

cess and provides a useful point of comparison.953

We compare the estimated graph structure with the true graph derived from the954

sparsity pattern of M̃ and report the average Matthews’ Correlation Coefficient (MCC)955

(Matthews, 1975) and F1 score over 30 replicates. We used an adapted MCC formula956

derived by J. J. Nichol et al. (2023), which accounts for edge cases in which the denom-957

inator would be zero, but is otherwise defined as:958

MCC = (TP× TN− FP× FN)√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(1)

where TP, FP, TN, and FN are true positive count, false positive count, true negative959

count, and false negative count, respectively. Here, a positive is a graph edge that ex-960

ists, and a negative is a graph edge that does not exist. The MCC graph similarity mea-961

sure is sometimes preferable to the more common Fβ Score (β is chosen such that re-962

–24–



manuscript submitted to JGR: Machine Learning and Computation

call is considered β times as important as precision), which is dependent on the ratio of963

positive to negative test cases; we treat link positives equally to link negatives, hence our964

preference for MCC. Figure 6 includes the F1 score due it its common use in causal dis-965

covery, but results are similar.966
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Figure 6: Comparison of CaStLed and non-CaStLed causal discovery approaches on
linear-Gaussian dynamics, including Granger causality or FullCI (orange), PC (green),
PCMCI (red), and DYNOTEARS (purple), as well as a statistical model of the data gen-
erating process (blue) presented with both MCC and F1 metrics. In the low-sample size
regime (T=10, left) CaStLed approaches can accurately recover the underlying causal
graph, with performance increasing on larger grid sizes (solid lines); by contrast, non-
CaStLed approaches are unable to perform better than mere chance (dashed lines). Even
a model based on the underlying data generating process (Sparse VAR, blue) is signifi-
cantly outperformed by its CaStLed counterpart. In the high-sample size regime (T=150,
right), non-CaStLe approaches have improved performance but still compare unfavorably
with their CaStLed counterparts.

In Figure 6, we depict CaStLe performance results on a 2D VAR with ground-truth967

link density d = 4
9 . We show two extremes of sample size: a low-sample regime of T =968

10, which is barely enough to identify the local dynamics of 9 cells, and a high-sample969

regime of T = 150. Our results are quite striking: in the low-sample regime, the CaS-970

tLed versions of each algorithm can accurately infer graph structure, with near-perfect971

performance on grids of size 10×10. By contrast, the performance of the non-CaStLed972

versions is essentially no better than random guessing, with only the sparse VAR able973

to exhibit any skill, and then only on small grids. In the high-sample regime, the CaS-974

tLed variants perform well on all grid sizes, with CaStLe-PC consistently achieving per-975

fect recovery; the non-CaStLed variants perform better, as expected, but their perfor-976

mance still decays quickly as the spatial grid grows.977
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While the stronger performance of the CaStLed variants is noteworthy, the exhib-978

ited trends are even more important and highlight the true strength of the CaStLe ap-979

proach: CaStLed approaches improve on larger grids while traditional approaches suf-980

fer. While Figure 6 shows results for the fixed link density d = 4
9 , we present results981

for all other link densities in Appendix K.982

Having established CaStLe’s strong performance on linear dynamics, we also val-983

idated its effectiveness on non-linear systems that more closely resemble realistic phys-984

ical processes in Earth science. Specifically, we applied CaStLe to the advection-diffusion985

dynamics of Burgers’ equation, a fundamental non-linear PDE that models a combina-986

tion of advective and diffusive processes. Unlike our VAR benchmarks, which are dis-987

crete linear models with random initializations, Burgers’ equation presents continuous988

non-linear dynamics that allow us to evaluate CaStLe’s ability to recover spatial prop-989

agation patterns under controlled conditions. Our analysis demonstrates that CaStLe990

successfully identifies the underlying advection angle across a range of diffusion condi-991

tions, further supporting its applicability to complex space-time systems. This non-linear992

validation’s complete methodology and results are presented in Appendix D.993

7 Discussion994

We have introduced CaStLe, a novel causal discovery meta-algorithm tailored for995

analyzing grid-level space-time data sets arising in Earth science. CaStLe can be directly996

applied to grid-level data and does not require pre-processing and spatial dimension re-997

duction, allowing it to capture dynamics in the natural domain of the data rather than998

a derived (PCA-type) space. This distinction is crucial because global-scale phenomena999

across many complex systems, whether climate teleconnections, ecological patterns, or1000

fluid dynamics, emerge from networks of local causal interactions that are often lost in1001

dimensionality reduction approaches. While demonstrated with Earth science case stud-1002

ies, CaStLe is fundamentally domain-agnostic, applicable to any space-time system gov-1003

erned by local physical interactions, from fluid dynamics and heat transfer to biologi-1004

cal pattern formation.1005

CaStLe can overcome the limitations of existing causal discovery approaches in Earth1006

science’s space-time data, filling a significant gap. By leveraging realistic assumptions1007

of locality and homogeneity, CaStLe creates “spatial replicates” to substitute large ob-1008

servational domains for lengthy time series. This process transforms the spatial causal1009

discovery problem from the high-dimensional (many variables, few observations) to the1010

low-dimensional (few variables, many observations) regime, allowing accurate and effi-1011

cient discovery of underlying causal dynamics. A key aspect of CaStLe is the causal sten-1012

cil graph, a simplified representation of the local dynamics driving larger global behav-1013

iors. This notion of a stencil is particularly well-suited for systems able to be modeled1014

by PDEs, as PDE-type dynamics inherently enforce both locality and homogeneity, as1015

well as the sufficiency assumptions necessary for causal discovery to be truly causal.1016

We used these insights to identify the space-time evolution of volcanic aerosols that1017

erupted from Mount Pinatubo in the HSW-V and E3SMv2-SPA models. We found that1018

CaStLe found the expected path of advection in both models and more nuanced dynam-1019

ics, including northward and southward dispersion, in E3SMv2-SPA. We showed that1020

CaStLe outperforms its peers in the causal discovery of synthetic benchmarks generated1021

by vector autoregressive structural causal models. Additionally, as detailed in Appendix1022

D, we found that CaStLe could accurately identify the advection angle in our Burgers’1023

equation benchmark, demonstrating that it can filter out the “noise” of diffusion.1024

Our brief theoretical analysis of CaStLe in Section 4.4 and in Appendix B, demon-1025

strates two regimes of consistent estimation for CaStLe, i.e., CaStLe recovers the true1026

causal dynamics: long time series (T →∞) or large grid sizes (N →∞). This starkly1027
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contrasts existing approaches, whose performance rapidly deteriorates as N →∞. Sev-1028

eral other important theoretical questions remain open, including the optimal relation-1029

ship between sampling rates and grid resolution, behavior under mild violation of the1030

key assumptions, and the correct target of inference for systems without clear advective1031

dynamics (e.g., the chemical evolution of atmospheric aerosols).1032

We have focused our attention on space-time data observed on regular 2D grids,1033

but we believe that this assumption can be relaxed to adapt CaStLe for a broader range1034

of observational structures. CaStLe can also be adapted to multivariate space-time data1035

(more than one observation at each point) by including more comeasured variables in1036

CaStLe’s transformation of the region to the reduced coordinate space, enabling causal1037

discovery of the space-time interactions of multiple species on the grid-level, which is a1038

particularly exciting avenue of future research and application to Earth system dynam-1039

ics. Developing data-driven methods for evaluating block sizes based on output robust-1040

ness will enable more automatic application of CaStLe, requiring less subject matter ex-1041

pertise. Finally, causal representation learning is a nascent field combining the estima-1042

tion power of machine learning with the strength of inference of causal discovery. Ap-1043

plying these techniques in CaStLe’s parent-identification phase or for discovering spa-1044

tial embeddings for regional block analysis is an exciting potential direction for future1045

work.1046

Because our assumptions are readily satisfied by many physical systems, CaStLe1047

can be applied quite broadly in the physical sciences. It may find value in any space-time1048

system in which quantities at every point in space impact their adjacent spatial neigh-1049

bors. In the Earth system, it may be of particular interest for studying forest fires, ocean1050

dynamics, salt/fresh water incursions, and coastal erosion, for example. For atmospheric1051

rivers, CaStLe could identify pathways of moisture transport and evolution; for wildfire1052

spread, it could reveal causal relationships between local weather conditions and fire be-1053

havior; for drought propagation, it could track how soil moisture deficits spread across1054

regions. CaStLe’s preservation of local causal structures while efficiently handling high-1055

dimensional data offers advantages over approaches requiring dimension reduction. For1056

datasets where the temporal sampling is too coarse relative to the spatial resolution, ex-1057

tending to a radius-2 neighborhood might be appropriate while still maintaining our core1058

assumption of locality. This extension would preserve the fundamental CaStLe methodology—1059

only the dimensionality of the reduced coordinate space would increase. Additionally,1060

CaStLe provides a promising framework for Earth system model evaluation (Nowack et1061

al., 2020; J. J. Nichol et al., 2021), potentially identifying where models produce correct1062

outcomes through incorrect causal mechanisms.1063

While climate science typically studies large, long-term phenomena, the commu-1064

nity increasingly recognizes the importance of understanding multi-scale interactions (Diffenbaugh1065

et al., 2005; Palu, 2019; Agarwal et al., 2019; Z. Zhang et al., 2022). Teleconnections present1066

an exciting challenge for future applications of CaStLe. These statistical dependencies1067

between distant regions appear to violate locality but physically result from countless1068

local interactions that are often unobserved or unmodeled. A two-stage methodology could1069

be effective for tackling this challenge. First, apply CaStLe to discover local causal sten-1070

cils, and then apply a complementary causal discovery technique to connect the discov-1071

ered local processes across scales. This approach could bridge the gap between local and1072

global causal discovery in climate science.1073

Complex space-time systems present apex challenges for causal discovery, combin-1074

ing chaotic dynamics, high dimensionality, noisy observational records, and complex un-1075

derlying physical processes. CaStLe represents the first successful application of causal1076

graph discovery to learn grid-cell-level causal structures in Earth systems. By preserv-1077

ing local causal structures while efficiently handling high-dimensional data, CaStLe presents1078

a path toward connecting micro-scale interactions with macro-scale phenomena, poten-1079

tially offering new insights into how global patterns emerge from local causal mechanisms.1080
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There are rich future research directions, including multivariate analysis and automated1081

block size selection. The feasible discovery of local causal stencils presents an exciting1082

new frontier for causal discovery of space-time data, particularly in the Earth sciences.1083
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Appendices1084

Table 1: Capabilities of CaStLe for Earth science applications. This table summarizes the
key methodological advantages of CaStLe and their relevance to specific Earth science
phenomena, highlighting applications where grid-level causal discovery enables analyses
that were previously infeasible with prior causal discovery approaches.

Capability Description Relevant Applications
Local mechanism
discovery

Global phenomena emerge
from local causal
interactions. Previous
approaches use
dimensionality reduction,
losing this local information.

Volcanic plume transport (Sjolte
et al., 2021), wildfire propagation
& plume transport (Baranowski
et al., 2021), atmospheric rivers
(Payne et al., 2020; Baño-Medina
et al., 2025; Higgins et al., 2025)

Transient,
non-periodic
phenomena

CaStLe effectively identifies
grid-level causal pathways.

Volcanic eruptions, heat waves
(Keellings & Moradkhani, 2020),
wildfires (Driscoll et al., 2024)

High-dimensional
data settings

CaStLe leverages spatial
replicates to make high-
dimensional problems
tractable.

Gridded Earth science data from:
regional climate modeling, satellite
observation analysis, climate re-
analysis products (Ali et al., 2024,
Table 3)

Earth system
model evaluation
and comparison

CaStLe enables
comparison of causal
mechanisms between models
and observations at the grid
level, potentially
identifying where models
produce correct outcomes
through incorrect causal
mechanisms.

Grid-level causal model evaluation
that identifies local mechanism
differences between models and
observations, extending beyond
previous approaches that were
limited to regional-scale analysis
(Nowack et al., 2020; J. J. Nichol
et al., 2021)

Appendix A Understanding Assumptions1085

In this section, we outline the key assumptions underpinning the CaStLe frame-1086

work and their relationship to causal discovery assumptions.1087

A.1 CaStLe Assumptions1088

CaStLe operates via two complementary sets of assumptions:1089

1. CaStLe Framework Assumptions (T1, S1, T2, S2): These enable efficient1090

use of spatiotemporal data by leveraging locality and stationarity to transform a1091

high-dimensional problem into a tractable one.1092

2. Causal Discovery Assumptions: The causal discovery algorithm used within1093

CaStLe’s Parent Identification Phase requires its own set of assumptions - typ-1094

ically the Causal Markov Condition, Faithfulness, and Causal Sufficiency.1095
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While these assumption sets are conceptually distinct and serve different purposes,1096

they work together to enable scalable causal discovery in high-dimensional space-time1097

systems.1098

In review, our framework introduces four key assumptions to capture a “PDE-like”1099

system Xt, creating an environment where local space-time dynamics can be efficiently1100

learned:1101

T1) Temporal Locality: restricts causal influence to the most recent past state, one1102

time lag, aligning with how PDEs are discretized.1103

T2) Temporal Causal Stationarity: ensures consistent causal structure over time.1104

S1) Spatial Locality: limits causal influence to immediate spatial neighbors.1105

S2) Spatial Causal Stationarity: ensures consistent causal structure across space.1106

These assumptions enable CaStLe to leverage “spatial replicates”—treating each1107

local neighborhood as providing information about the same underlying causal process.1108

This transforms what would be a high-dimensional, data-sparse problem (many variables,1109

few observations) into a data-rich problem (few variables, many observations).1110

A.2 Causal Discovery Assumptions1111

Separately, the causal discovery algorithm used within CaStLe’s PIP require its own1112

assumptions. The three foundational assumptions of causal discovery are provided be-1113

low, verbatim from Runge (2018). In depth discussion of each is discussed by Spirtes et1114

al. (1993, Ch. 3), and Peters et al. (2017, Ch. 6.5). They are discussed in terms of di-1115

rected graph separation (▷◁), where variables are separated when all causal paths between1116

them are “blocked” by conditioning variables, preventing information flow through the1117

graph structure. Separation is detailed more thoroughly by Runge (2018, Section III B.).1118

• Causal Markov condition:1119

The joint distribution of a time series process X with graph G fulfills the Causal1120

Markov Condition if and only if for all Yt ∈Xt with parents PYt
in the graph1121

X−
t \PYt

▷◁ Yt | PYt
=⇒ X−

t \PYt
⊥⊥ Yt | PYt

, (2)

that is, from separation in the graph (since the parents PYt
separate Yt from X−

t \PYt
1122

in the graph) follows independence.1123

This includes its contraposition1124

X−
t \PYt��⊥⊥Yt | PYt =⇒ X−

t \PYt ̸▷◁ Yt | PYt , (3)

from dependence follows connectedness.1125

– A variable is conditionally independent of its non-effects given its direct causes.1126

• Faithfulness:1127

The joint distribution of a time series process X with graph G fulfills the Faith-1128

fulness condition if and only if for all disjoint subsets of nodes (or single nodes)1129

A, B, S ⊂ G it holds that1130

XY ⊥⊥ XZ | XS =⇒ Y ▷◁ Z | S, (4)

that is, from independence follows separation, which includes its logical contra-1131

position1132

Y ̸▷◁ Z | S =⇒ XY��⊥⊥XZ | XS , (5)

from connectedness follows dependence.1133
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– Every conditional independence in the data must correspond to a separation1134

in the causal graph (no accidental cancellations).1135

• Causal sufficiency:1136

A set W ⊂ V × Z of variables is causally sufficient for a process X if and only1137

if in the process every common cause of any two or more variables in W is in W1138

or has the same value for all units in the population.1139

A.3 Relationship Between Assumption Sets1140

While CaStLe assumptions (T1-S2) and causal discovery assumptions serve differ-1141

ent purposes, there are important interactions between them:1142

• CaStLe assumptions create an environment where causal discovery becomes tractable1143

in some high-dimensional gridded settings.1144

• CaStLe assumptions do not guarantee causal discovery assumptions will be sat-1145

isfied.1146

• For example, even in perfectly stationary systems (T2, S2 satisfied), faithfulness1147

can be violated through counteracting mechanisms, as demonstrated in Runge (2018).1148

• Similarly, the Causal Markov Condition is a property of the joint distribution that1149

cannot be derived from locality assumptions.1150

Instead of replacing causal discovery assumptions, CaStLe’s assumptions create a1151

context where causal discovery methods can be applied efficiently to high-dimensional1152

space-time data.1153

A.3.1 CaStLe’s Implementation and Causal Sufficiency1154

One meaningful connection exists between CaStLe’s implementation and causal dis-1155

covery assumptions: When CaStLe focuses on identifying only the parents of the cen-1156

ter cell while including all potential spatial neighbors (per assumption S1), causal suf-1157

ficiency is automatically satisfied for that specific node by construction - assuming S11158

holds true.1159

This is a significant benefit, as causal sufficiency is typically the most difficult as-1160

sumption to guarantee in practice (Spirtes et al., 1993; Raghu et al., 2018). While CaS-1161

tLe cannot guarantee faithfulness or the Markov condition holds, its design cleverly lever-1162

ages spatial structure to address causal sufficiency within each local analysis.1163

A.4 Potential Violations and their Manifestations1164

Violations of CaStLe’s assumptions can occur in various ways, leading to different1165

manifestations in the causal discovery process. Violations of CaStLe’s assumptions can1166

affect results in different ways:1167

1. Violations of Temporal/Spatial Locality (T1, S1): If causal effects extend beyond1168

immediate neighbors, CaStLe will miss these connections, creating false negatives.1169

2. Violations of Stationarity (T2, S2): If dynamics change across space or time, CaS-1170

tLe’s stencil will represent only an average pattern, potentially creating both false1171

positives and negatives.1172

3. Even with CaStLe assumptions holding, traditional faithfulness violations can oc-1173

cur through cancellation effects or deterministic relationships.1174

Below, we provide examples of how these assumptions can be violated and their1175

potential impacts, drawing on the discussion by Runge (2018).1176
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A.4.1 Temporal and Spatial Locality (T1, S1)1177

• General Violation: These assumptions can be violated by any process that intro-1178

duces dependencies beyond immediate temporal or spatial neighbors.1179

• Example – Time Aggregation: Time aggregation can violate temporal locality by1180

introducing dependencies across multiple time steps. Runge (2018) discusses how1181

time aggregation can cause such violations (Section IV.B, Example 4). Figure 51182

in Runge (2018) illustrates the impact of time aggregation on causal inference.1183

• Example - Spatial Aggregation: Similarly, spatial aggregation can violate spatial1184

locality by introducing dependencies across non-neighboring spatial units.1185

A.4.2 Temporal and Spatial Causal Stationarity (T2, S2)1186

• General Violation: These assumptions can be violated by any process that intro-1187

duces changes in the causal relationships over time or space.1188

• Example – Counteracting Mechanisms: Counteracting mechanisms or heteroge-1189

neous processes can violate these stationarity assumptions. If the data contains1190

opposing generating processes (e.g., different hemispheres in climate data), the faith-1191

fulness assumption may be violated. This results in unstable and inconsistent causal1192

relationships. Runge (2018) discusses such violations in Section IV.C, Example1193

5, and provides an illustration in Figure 6.1194

Understanding potential violations and their manifestations is crucial for apply-1195

ing our framework effectively in realistic scenarios. Section 4.6 outlines practical strate-1196

gies to mitigate these violations.1197

Appendix B Statistical and Time Complexity1198

In this section, we elaborate on Section 4.4 and provide a more detailed discussion1199

of the time-complexity (Appendix B.1) and statistical (Appendix B.2) properties of CaS-1200

tLe. Additionally, we provide analyses giving conditions under which CaStLe is (asymp-1201

totically) guaranteed to recover the true causal graph, independent of the specific PIP1202

used.1203

B.1 Time Complexity1204

Steps A, B, and D of CaStLe consist primarily of copying and rearranging of data,1205

so we focus our analysis on the complexity of Step C, which dominates the runtime of1206

CaStLe. Because CaStLe can use a variety of PIPs within Step C, we begin with a gen-1207

eral analysis of the worst-case time complexity of causal discovery algorithms. Through-1208

out, recall that a runtime complexity O(f(n)) implies there exists a fixed constant C ≥1209

0 such that that the algorithm terminates in at most Cf(n) steps for any input of size1210

n.1211

Kalisch and Bühlmann (2007) and Runge (2018) discuss the time complexity of causal1212

discovery, particularly the PC algorithm. Much of constraint-based causal discovery is1213

descendant of PC, and it represents a valuable baseline for comparing the computational1214

complexity of CaStLe and prior work. Causal discovery is largely bounded by how long1215

it requires to determine independence between nodes (bounded by samples and size of1216

conditioning sets of nodes) and how many times it needs to do so (generally bounded1217

by the number of nodes). Runge (2018) cite the time complexity of a single conditional1218

independence test using ordinary least squares (linear partial correlation), while Kalisch1219

and Bühlmann (2007) explore bounds on the number of tests in PC. Our analysis is con-1220

sistent with theirs, which we derive from first principles.1221

–32–



manuscript submitted to JGR: Machine Learning and Computation

Consider causal discovery in p-dimensions (p measured variables) with n samples;1222

suppose further that it is known, a priori, that any node in the causal graph has at most1223

degree q: that is, no element has more than q causal parents. An exhaustive search for1224

the causal parents of a single node will require evaluating
∑q

i=0
(

p
i

)
= O(2p) possible1225

sets of parents; repeating this process for all p nodes evaluation of up to O(p2p) possi-1226

ble causal graphs. If we construct graphs using statistical tests for linear partial (con-1227

ditional) correlation, each test can be performed in O(n p min{n, p}) = O(np2) time1228

(the time required to fit an OLS regression to n observations and p variables using a di-1229

rect method such as an SVD or QR factorization), yielding an overall runtime of1230

O(np2 ∗ p2p) = O(np32p).

This analysis is quite loose, and as Runge (2018) notes, the complexity of a single lin-1231

ear conditional independence test can be reduced to O(np2q2) when efficient algorithms1232

are used. Far stronger guarantees can be provided for specific causal discovery algorithms1233

that more efficiently search the space of possible graphs. Regardless, even this rough anal-1234

ysis will be sufficient to demonstrate the algorithmic improvements attained by CaStLe.1235

We now consider the specific context of causal discovery from gridded time series1236

data. Here, we have n = T total observations and have p = N2 features of our data.1237

Direct application of causal discovery to this data gives a worst-case complexity of1238

O(np32p) = O(T (N2)32N2
) = O(TN62N2

),

so the complexity of standard causal discovery methods grows super-exponentially with1239

the size of the grid. For the purposes of direct comparison to CaStLe, where p = N2,1240

we assume PC’s τmax = 1. By contrast, the reduced space where CaStLe’s PIP oper-1241

ates has T (N−2)2 observations and only p = 9 features, yielding a polynomial worst-1242

case runtime of1243

O(np32p) = O(T (N − 2)2 ∗ 93 ∗ 29) = O(TN2).

Even for grids of relatively modest size, this improvement can be significant: con-1244

sider a small 30×30 grid; at 1◦ resolution, this covers approximately 1.5% of the globe.1245

Unstructured causal discovery methods need to consider approximately 306 ∗ 230 pos-1246

sible graphs, while CaStLe needs to evaluate only 93∗29 = 373, 248 graphs, represent-1247

ing an improvement of approximately 2×1012-fold. Specific PIPs may provide less dra-1248

matic improvements, but it is clear that CaStLe can be expected to be millions-if not1249

billions-of times more efficient than existing approaches.1250

Note that in our application scenarios, CaStLe is always applied to a square N×1251

N grid. However, more generally we can consider p grid cells. Traditional causal discov-1252

ery will be bounded by1253

O(Tp32p),
while CaStLe will be bounded by1254

O(Tp).
Thus, if grid cells scale linearly, CaStLe scales linearly in both samples and grid cells.1255

B.2 Statistical Consistency1256

Statistically, we see that CaStLe can achieve significantly improved estimation per-1257

formance compared to a full graph inference approach. Rather than give a general anal-1258

ysis, we rely on the prior work of Kalisch and Bühlmann (2007) to compare CaStLe-PC1259

with the standard PC algorithm. Using the same definitions of n, p, q as in our previ-1260

ous analysis, Kalisch and Bühlmann (2007, Appendix B) show that the probability of1261

the PC algorithm incorrectly estimating the causal graph incorrectly is bounded above1262

by1263

P [Ĝ ̸= G] = O
(

pq+2(n− q)e−c(n−q)
)

.
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In our setting, this gives an error probability of1264

O
(

pq+2(n− q)e−c(n−q)
)

= O
(

(N2)N2+2(T −N2)e−c(T −N2)
)

= O
(

N2N2
ecN2

∗ Te−cT
)

for PC applied in the original data space. It is clear that this quantity grows rapidly in1265

N , consistent with the intuition that causal discovery algorithms struggle when applied1266

to larger spatial domains. By contrast, this analysis implies that the error probability1267

of CaStLe-PC scales as1268

O
(

pq+2(n− q)e−c(n−q)
)

= O
(

99+2(T (N − 2)2 − 9)e−c(T (N−2)2−9)
)

= O
(

TN2

eT N2

)
Quite surprisingly, this decreases with the graph size (N), implying that CaStLe actu-1269

ally achieves better performance when applied to larger spatial domains. We demonstrate1270

the remarkable practical effect of this scaling in Section 6.1. Similar improvements can1271

be shown for any base causal discovery algorithm (and associated PIP) for which pre-1272

cise estimates of statistical convergence rates are available.1273

Appendix C Asymptotic Consistency1274

We examine the asymptotic consistency of CaStLe, with a particular focus on the1275

Parent Identification Phase (PIP). Asymptotic consistency is a fundamental property1276

that ensures the accuracy of causal graph estimates as the number of observations in-1277

creases. We begin by establishing the technical assumptions necessary for our analysis,1278

specifically those related to the p-values generated by the PIP for edge existence. These1279

assumptions are critical for maintaining control over both false positive and false neg-1280

ative rates, thereby ensuring the reliability of our causal inferences. The central theo-1281

rem we present demonstrates that, under these conditions, CaStLe achieves asymptotic1282

consistency as the number of nodes approaches infinity. In the case of Bayesian score op-1283

timization causal discovery, such as DYNOTEARS, Bayesian posterior probabilities can1284

be used in lieu of p-values with suitable minor modifications to the combination proce-1285

dure. The proof is structured into three parts, addressing the independence of observa-1286

tions, the application of Fisher’s method for combining p-values, and the implications1287

of using overlapping regions. Through this analysis, we aim to reinforce the validity of1288

our algorithm and its effectiveness in uncovering causal relationships in gridded space-1289

time data structures.1290

Technical Assumption (P1):1291

• The Parent Identification Phase, PIP(·), produces p-values for edge existence, which1292

satisfy the following:1293

– For every non-edge (i, j) (j /∈ P(i)), P(p(i,j)
PIP ≤ u) = u for all u ∈ [0, 1]; that1294

is p
(i,j)
PIP ∼ U([0, 1]) is uniformly distributed.1295

– For every edge (i, j) (j /∈ P(i)) and every T > T0, there exists πT
(i,j)(u) > 01296

such that P(p(i,j)
PIP ≤ u) ≤ max{0, u− πT

(i,j)(u)} < u for all u ∈ [0, 1].1297

Taken together, these require that the PIP(·) control the false positive rate at the1298

nominal significance level used and that the false negative rate is less than the false1299

positive rate.1300

Here, T0 is a minor technical assumption to allow the PIP to have non-trivial ac-1301

curacy: we use it to exclude trivial cases like T = 1, in which no time series causal dis-1302

covery mechanism can be accurate.1303

Additionally, note that we typically assume that the PIP(·) is asymptotically con-1304

sistent, so that πT
(i,j)(u) is bounded above 0 for all u as T → ∞. This can be used to1305
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prove T -asymptotic consistency of CaStLe, but in this section we aim only to prove N -1306

asymptotic consistency.1307

Theorem: Suppose D is an RT ×N×N realization of a data-generating process sat-1308

isfying T1-S2. Suppose also that PIP(·) is a parent-identification-phase satisfying P1. Then,1309

there exists a T0 such that for any T ≥ T0, CaStLe is asymptotically consistent as N →1310

∞; that is, the causal graph estimated by CaStLe converges to the true causal graph gen-1311

erating D with probability 1.1312

Proof. This proof proceeds in three parts:1313

• First, we argue that, for large N , well-separated (non-overlapping) spatial regions1314

can be considered iid realizations.1315

• Next, we argue that the application of Fisher’s method leads to asymptotic con-1316

sistency of CaStLe.1317

• Finally, we argue that “infill” of the overlapping regions does not invalidate the1318

asymptotic consistency.1319

At a high level, we argue that, because it is T -asymptotically consistent, there exists some1320

T0 where the PIP has non-trivial power. We then apply standard statistical methods for1321

combining several weak p-values to obtain a global strong p-value. The technical book-1322

keeping of our argument serves primarily to deal with the fact that we use overlapping1323

spatial regions and cannot assume independence of the individual p-values; we overcome1324

this by selecting regions that are sufficiently spatially separated to be statistically inde-1325

pendent on the time scale considered.1326

Without loss of generality, we focus on asymptotically consistent estimation of a1327

single edge, say (East, Center). Extension to all 9 stencil edges follows immediately by1328

a standard union bound argument.1329

Part I: For analytical simplicity, we divide the spatial region into square regions1330

of size (5 + 2T )× (5 + 2T ). On a grid of size N ×N , there are BN,T = ⌊N/(5 + 2T )⌋1331

such regions. We apply the PIP(·) to the center 3×3 region of each region separately,1332

obtaining BN,T p-values for the existence of the edge. Because these central regions are1333

separated by (at least) 2T+2 grid cells and causal effects exist at a distance of at most1334

2T under our data generating model, these p-values can be treated as statistically in-1335

dependent. (This is essentially the same argument used by Goerg and Shalizi (2013), though1336

their application is quite different.)1337

Part II: Given BN,T independent p-values, we then apply Fisher’s method for com-1338

bining p-values. Specifically, given a set of p-values for edge non-existence, Fisher’s method1339

controls the familywise error-rate, rejecting the global null (no edges anywhere). By our1340

assumption of spatial homogeneity, if an edge exists in at least one region, it must ex-1341

ist everywhere, so Fisher’s method precisely tests for edge existence in the stencil.1342

Recall that Fisher’s method constructs a test statistic T = −2
∑B

b=1 log pb and1343

tests it against a null χ2
B distribution. We consider two cases:1344

1. If the edge does not exist, each p-value is U([0, 1]) by construction and the test1345

statistic T follows its null distribution. So long as the global significance level used1346

for Fisher’s test αFisher is converging to 0 as N → ∞, we have asymptotic con-1347

sistency for edge absence.1348

2. If the edge does exist, each p-value is less than α with probability (1+c)α for some1349

c strictly positive. We then have that T has a non-central χ2 distribution, which1350

is asymptotically distinguishable from a (central) χ2 at all significance levels as1351

N ∝ B →∞.1352
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Taken together, these guarantee the the output of Fisher’s method is asymptot-1353

ically consistent for both edge presence and edge absence.1354

Part III: In practice, we apply CaStLe not to disjoint regions but to overlapping1355

regions. As discussed elsewhere, the region-discretization strategy and the use of Fisher’s1356

method are such that this does not cause “cross-contamination” or invalid tests of edge1357

existence. We note here that this strategy also does not invalidate asymptotic consis-1358

tency of CaStLe. Specifically, we note that, with overlapping regions, the p-values used1359

in Fisher’s method may no longer be assumed independent.1360

In this case, however, this is not an issue as they exhibit positive dependence (as1361

they are taken from overlapping data). As such, the true degrees of freedom of T un-1362

der the null are less than the nominal degrees of freedom; this leads Fisher’s method to1363

be (if anything) overly conservative in finite samples. Hence, for the case of edge absence,1364

the nominal significance level is understated and we retain consistency as long as we take1365

αFisher
N→∞−−−−→ 0; for the case of edge presence, it suffices to note that the true sampling1366

distribution is still asymptotically distinguishable from the null (since each individual1367

p-value is powerful), so we retain consistency.1368

We note that Fisher’s method may not be the optimal method for combining p-1369

values. In particular, Holm’s method allows for arbitrary dependence of the p-values, likely1370

yielding better performance at finite N , but we do not pursue this approach here as the1371

implementation and theoretical analysis are somewhat more difficult. As with Fisher’s1372

method, Holm’s method controls the error rate of the global null which, under our as-1373

sumptions of causal stationarity, is precisely the correct null for accurate stencil estima-1374

tion.1375

Additionally, we note that the p-values produced by the PIP under the null do not1376

need to precisely satisfy a uniform distribution; conservative p-values decrease the value1377

of Fisher’s statistic T , thereby lowering the rate of false positives.1378

Remark: If PIP(·) is strongly asymptotically consistent as T →∞, it must sat-1379

isfy assumption P1.1380

Proof. We argue by contradiction. Suppose that PIP(·) were not asymptotically con-1381

sistent and that the false positive rates and false negative rates of the PIP were equal1382

(or worse, the false negative rate was greater than the false positive rate). Specifically,1383

assume that there exists a true edge (i, j) and some π− > 0 such that P(p(i,j)
PIP ≤ u) >1384

π− + u for all T and all u. For the PIP to guarantee no false positives, we must take1385

α→ 0 as T →∞. But this would imply that there remains an asymptotic π− proba-1386

bility of a false negative (P(p(i,j)
PIP ≤ α) > α+πi ≥ π− > 0), contradicting our assump-1387

tion of asymptotic consistency.1388

1389

Appendix D Application to Non-Linear Dynamics: Continuous Systems1390

via Burgers’ Equation1391

This appendix extends our validation of CaStLe to non-linear dynamical systems1392

through application to Burgers’ equation, demonstrating the method’s effectiveness be-1393

yond the linear systems discussed in the main text.1394

Having established the strong performance of CaStLe on discrete models of linear1395

dynamics, we turn to a far more challenging domain: continuous models with non-linear1396

PDEs. Specifically, motivated by our interest in turbulent atmospheric dynamics, we con-1397

sider Burgers’ equation, a PDE used to model a combination of advective (directed flow)1398
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and diffusive processes (Burgers, 1948). While initially developed to model fluid flows,1399

Burgers’ equation has been successfully applied to a variety of fields, such as turbulence,1400

non-linear wave propagation, traffic flow, cosmology, gas dynamics, and more (Bonkile1401

et al., 2018). In the following experiments, we again implemented CaStLe’s PIP with the1402

PC-Stable-Single algorithm.1403

We note that the interaction of PDE dynamics with causal language is rather sub-1404

tle: while PDEs are imbued with a “forward” direction in time, the actual numerical meth-1405

ods used to solve them include “forward” and “backward” steps in the underlying inte-1406

grators as well as sophisticated interpolation schemes. Our focus here is not on finding1407

a causal model for the PDE solution per se, but on identifying the structure of the un-1408

derlying advection. This choice is motivated in part by the results of Rubenstein et al.1409

(2018), who explored the related problem of identifying causal models from determin-1410

istic ordinary differential equations (ODEs). As they note, there is not generally a sin-1411

gle causal graph corresponding to an ODE, with different models being appropriate at1412

equilibrium or under various interventions. Given the additional complexity of PDEs,1413

we believe that identifying the underlying advection angle provides the most meaning-1414

ful causal representation of Burgers-type dynamics, particularly as it relates to our vol-1415

canic eruption aerosol case study.1416

D.1 Burgers’ Equation: Model and Parameters1417

In two dimensions, Burgers’ equation can be written as:1418

∂u

∂t
+ u

(
α

∂u

∂x
+ β

∂u

∂y

)
︸ ︷︷ ︸
Advective Dynamics

= c

(
∂2u

∂x2 + ∂2u

∂y2

)
︸ ︷︷ ︸
Diffusive Dynamics

+f (6)

where α, β are the advection coefficients in the x, y directions, capturing directed flow1419

dynamics; c is the diffusion coefficient; and f is a forcing term representing additional1420

mass being injected into the system. In order to create a closed system with no exoge-1421

nous forcings, we take f = 0 uniformly throughout this section.1422

The left panel of Figure D1 shows three different solutions to Burgers’ equation at1423

different advection angles (θ), advection strength (M =
√

α2 + β2), and diffusivities1424

(c), each with the same initial conditions. Examining the time evolution of these solu-1425

tions (left to right), we see that the high-advection low-diffusion systems (top) exhibit1426

a clear direction of flow, while it is far more difficult to find direction in low-advection1427

high-diffusion systems (bottom). We take inferring the angle of advection as our prin-1428

cipal task: given an observed solution u to Equation (6), can we determine the angle of1429

the underlying advective dynamics?1430

D.2 Advection Angle Estimation1431

Given a CaStLe-estimated stencil, we infer the angle of underlying advection in the1432

following manner: i) identify each potential parent edge of C with a vector, taking the1433

angle of the underlying edge in the reduced space as direction and the (signed) strength1434

of the underlying relationship as magnitude; ii) sum these vectors to obtain an aggre-1435

gate estimate of the advective dynamics; iii) take the angle of the vector sum as an es-1436

timate of the underlying advection angle. In pseudo-code, we can write this as1437

θ̂ = atan2

 ∑
l∈P(C)

el sin θl,
∑

l∈P(C)

el cos θl

 .

Here atan2 is the signed arctangent function, P(C) = {NW, N, . . . , W} represents all po-1438

tential parents the center cell, el represents the strength of that edge (0 for non-present1439
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Figure D1: Application of CaStLe-PC to advection estimation from non-linear PDE dy-
namics. In the left panel, the first three columns depict realizations of Burgers’ equation
under different advection-to-diffusion regimes; the fourth column depicts the causal stencil
identified by CaStLe-PC; and the final column compares the estimated advection angle
with the true advection angle. The right panel depicts the accuracy of CaStLe-PC under
various signal-to-noise conditions. Each combination of advection and diffusion rates were
tested with 500 angles sampled uniformly from [0◦, 360◦). In low-diffusion (high SNR) sce-
narios, CaStLe-PC can identify the underlying advection clearly (top row of left panel and
yellow-green columns in right panel). By contrast, in low-advection (low SNR) scenarios,
CaStLe-PC struggles to accurately identify the underlying advective dynamics (bottom
row of left panel and blue bars in right panel). Even in highly diffusive scenarios, CaStLe-
PC is able to accurately estimate the underlying advection when it is sufficiently strong
(around M/c ≥ 20) as shown in the middle row of the left panel. Additional details are
given in Appendix D.

edges), and θl represents the angle of that edge (135◦, 90◦, . . . , 180◦). This process al-1440

lows us to estimate all angles instead of just the eight angles present in the stencil struc-1441

ture.1442

D.3 Experimental Setup1443

In order to assess the effectiveness of CaStLe-PC in a variety of regimes, we gen-1444

erate (approximate) solutions to Equation (6) with 500 angles sampled uniformly from1445

[0◦, 360◦), advection magnitudes varying from 1 to 10 and diffusion coefficients from 0.051446

to 0.5. The diffusion-free (“noiseless”) case of c = 0 is numerically unstable. To com-1447

pute the simulated Burgers’ dynamics, we use Matlab’s default PDE solver (pdesolve)1448

on a circular mesh of radius 3 and 100 time steps equally spaced between t = 0 and t =1449

1. Then we interpolated the finite-element solution onto a grid of size 25 × 25, cover-1450

ing the square [−1, 1]2, yielding spatial points that are approximately 0.1 units apart.1451

We restrict our solution to avoid any boundary conditions. Finally, we apply CaStLe-1452

PC and the aforementioned advection angle estimation method, and compare the esti-1453

mated angle to the true angle. We demonstrate three realizations of this process in the1454

left-hand panel of Figure D1.1455

D.3.1 Angle Estimation Results1456

Our results appear in the right panel of Figure D1, where we plot the difference1457

in the true and estimated angle, taking care to account for the “wrapping” behavior of1458

angle-valued data. We see that stronger advection (higher SNR) consistently leads to1459
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improved estimation (downward trend within each group), with estimated angles con-1460

sistently within 10◦ for advection magnitude 5 or greater. Comparing across different1461

levels of the diffusion coefficient c, we note that higher c increases the angle estimation1462

error, as we would expect in the higher-noise regimes. For low advection magnitude and1463

c ≥ 0.3, we see an average error approaching the “pure guessing” value of 90◦. Even1464

at high diffusion levels (c = 0.5), moderate advection magnitudes of 5-6 are sufficient1465

to ensure accurate estimation. From these, we see that CaStLe-PC is able to consistently1466

recover advection structure across a wide range of SNR regimes. As demonstrated in Ap-1467

pendix F, traditional dimension reduction approaches such as PCA and PCA-varimax,1468

when combined with standard causal discovery methods, fail to accurately capture the1469

advection dynamics in Burgers’ equation, particularly in identifying the correct advec-1470

tion angle. This highlights CaStLe’s unique ability to preserve and extract meaningful1471

causal structures from nonlinear PDE systems that would otherwise be lost through di-1472

mensionality reduction.1473

The takeaway from these results is that CaStLe can not only generalize to contin-1474

uous, non-linear models of advection and diffusion, but it can successfully infer the di-1475

rection of causality in any advective-diffusive system, given that the diffusion is not so1476

large as to dominate advection. Further, each simulation has only one signal surrounded1477

by large areas without data or causal information. Despite this sparsity and the pres-1478

ence of regions where diffusive information flow might suggest incorrect advection an-1479

gles, CaStLe successfully identifies the correct advection angle when analyzing the full1480

space. CaStLe is asked to learn from the full space, but successfully hones in on the cor-1481

rect advection angle. With these results, we believe CaStLe can be applied to a broad1482

range of space-time systems with advective-diffusive properties to better understand their1483

dynamics.1484

Appendix E Proposed Modification of Statistical Methods for CaStLed1485

Data1486

While essentially any consistent PIP may be used in Step C, we anticipate that most1487

PIPs will be derived from already existing causal discovery algorithms. Often, these al-1488

gorithms are statistical in nature and it may be inappropriate to apply them directly to1489

X̃ due to the seams connecting each time chunk. For a statistical method, which com-1490

putes a p-value for each potential edge (smaller p-values leading to present edges), we1491

suggest the following chunk testing modification:1492

1. For each chunk b ∈ {1, . . . , (N − 1)2}, let pb be the p-value resulting from the1493

PIP applied to that chunk.1494

2. Compute T = −2
∑

b ln pb1495

3. Let pagg = 1−χ2
2(N−1)2(T ) where χ2

k(x) is the cumulative distribution function1496

(CDF) of a χ2 random variable with k degrees of freedom evaluate at x.1497

4. If pagg < p∗, identify a parent.1498

This method adapts Fisher’s classical method for combining independent p-values to our1499

setting. In practice, however, we have found that for sufficiently large T , this chunking1500

is unnecessary as the proportion of seams in X̃ goes to zero, and the PIP identifies the1501

correct causal structure despite the small fraction of points of misspecification (1/T ).1502

Appendix F Limitations of Dimensionality Reduction for Space-Time Causal1503

Discovery1504

We demonstrate the limitations of dimensionality reduction approaches such as PCA1505

and PCA-varimax when applied to space-time causal discovery of advective-diffusive pro-1506

cesses. Causal discovery methods in Earth science often employ these techniques to re-1507
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duce the high dimensionality of gridded data before applying causal discovery algorithms.1508

While effective for identifying large-scale teleconnections, we show that these approaches1509

fail to capture the local causal structures that are essential for understanding space-time1510

dynamics at the grid-cell level.1511

To illustrate these limitations, we apply PCA and PCA-varimax dimension reduc-1512

tion followed by PCMCI causal discovery–—the procedure described by Runge et al. (2015),1513

Nowack et al. (2020), and Tibau et al. (2022) and employed in subsequent work—to each1514

of our case studies: Burgers’ equation, HSW-V, and E3SMv2-SPA. Our analysis reveals1515

that while dimensionality reduction techniques can identify dominant modes of variabil-1516

ity, they struggle to preserve the spatial relationships between neighboring grid cells, thus1517

obscuring the local causal pathways that CaStLe is specifically designed to recover.1518

For the PCMCI step, we explored multiple lag values in our experiments and found1519

that the results were consistently unable to capture the directional advection structure1520

regardless of lag parameter choice. This suggests that the limitation is a fundamental1521

constraint of the dimensionality reduction approach. In the results below, we show the1522

simplest case with a maximum lag of 1.1523

Figure F1 shows the PCA analysis of Burgers’ equation, where four EOFs capture1524

approximately 91% of variance but the resulting PCMCI causal graph fails to recover1525

the directional advection process, demonstrating PCA’s inability to preserve local causal1526

structures. Figure F2 shows similar limitations with PCA-Varimax applied to the same1527

Burgers’ equation data, where despite the rotation enhancing spatial localization of pat-1528

terns, the causal graph still cannot represent the known directional advection dynam-1529

ics. Figure F3 illustrates PCA applied to the HSW-V volcanic aerosol dataset, where four1530

EOFs explain 85% of variance but produce a causal graph that misrepresents the known1531

transport mechanisms. Figure F4 demonstrates that even with varimax rotation, which1532

provides more spatially distinct patterns in the HSW-V dataset, the resulting causal graph1533

cannot capture the directional flow of volcanic aerosols. The EOFs were reordered ac-1534

cording to the identified centroids’ longitude to improve interpretability. Figure F5 shows1535

the application of PCA to the E3SMv2-SPA climate model data, where nine EOFs ac-1536

count for 87% of variance, yet the PCMCI causal graph fails to detect the underlying1537

atmospheric circulation patterns. Figure F6 reveals that PCA-Varimax rotation of the1538

E3SMv2-SPA data, with EOFs similarly reordered by longitudinal position for interpretabil-1539

ity, still fails to recover the known directional transport processes, further confirming the1540

limitations of dimensionality reduction for space-time causal discovery.1541
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Figure F1: PCA study of Burgers’ equation solution (θ = 45◦, M = 6, c = 0.05). Four
empirical orthogonal functions (EOFs) capture ≈91% of variance, with spatial patterns
(left) and temporal evolution (right). The bottom panels show explained variance dis-
tribution and PCMCI causal graph, which fails to accurately represent the known direc-
tional advection process in the underlying PDE, highlighting limitations of this approach
for local causal structures in space-time systems.
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Figure F2: PCA-Varimax study of Burgers’ equation solution (θ = 45◦, M = 6, c = 0.05).
Four empirical orthogonal functions (EOFs) capture ≈91% of variance, with spatial pat-
terns (left) and temporal evolution (right). The bottom panels show explained variance
distribution and PCMCI causal graph, which fails to accurately represent the known
directional advection process in the underlying PDE, highlighting limitations of this ap-
proach for local causal structures in space-time systems.
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Figure F3: PCA study of the HSW-V dataset, in the time interval 21 days post-eruption.
Four empirical orthogonal functions (EOFs) capture ≈85% of variance, with spatial pat-
terns (left) and temporal evolution (right). The bottom panels show explained variance
distribution and PCMCI causal graph, which fails to accurately represent the known
directional advection process in the underlying system, highlighting limitations of this
approach for local causal structures in space-time systems.
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Figure F4: PCA-Varimax study of the HSW-V dataset, in the time interval 21 days post-
eruption. Four empirical orthogonal functions (EOFs) capture ≈85% of variance, with
spatial patterns (left) and temporal evolution (right). Since varimax rotation does not
preserve the explained variance ordering, we reordered EOFs according to the identified
centroid’s longitude. The bottom panels show explained variance distribution and PCMCI
causal graph, which fails to accurately represent the known directional advection process
in the underlying system, highlighting limitations of this approach for local causal struc-
tures in space-time systems.
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PCA Analysis of E3SM-SPA

Figure F5: PCA study of the E3SMv2-SPA dataset, in the time interval of days 15-35.
Nine empirical orthogonal functions (EOFs) capture ≈87% of variance, with spatial pat-
terns (left) and temporal evolution (right). The bottom panels show explained variance
distribution and PCMCI causal graph, which fails to accurately represent the known
directional advection process in the underlying system, highlighting limitations of this
approach for local causal structures in space-time systems.
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PCA-Varimax Analysis of E3SM-SPA

Figure F6: PCA-Varimax study of the E3SMv2-SPA dataset, in the time interval of days
15-35. Nine empirical orthogonal functions (EOFs) capture ≈87% of variance, with spatial
patterns (left) and temporal evolution (right). Since varimax rotation does not preserve
the explained variance ordering, we reordered EOFs according to the identified centroid’s
longitude. The bottom panels show explained variance distribution and PCMCI causal
graph, which fails to accurately represent the known directional advection process in the
underlying system, highlighting limitations of this approach for local causal structures in
space-time systems.
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Appendix G Additional experimental details for Section 51542

CaStLe inherits several of the runtime parameters of the underlying PIP used. In1543

Section 5, we set these values at relatively stringent threshold to highlight the most ro-1544

bust and important dynamics and to yield a highly interpretable graph; additional weaker1545

dynamics can be recovered by relaxing these choices at the (potential) cost of additional1546

false positive edges and less interpretability. Data-driven optimization of these param-1547

eters is difficult, though the validation strategies suggested by Allen et al. (2023) may1548

be useful here. Specifically, we set a p-value threshold of 1×10−5 and removed estimated1549

partial correlations of magnitude less than 0.35; we note here that, due to the adaptive1550

search heuristics used by the PIP, the p-value threshold applied here is not a proper mea-1551

sure of statistical significance, but only a heuristic measure of estimated strength. We1552

note that our resulting interpretations are generally quite robust to specific choices of1553

these values.1554

Appendix H Analysis of Spatial Blocking1555

Here, we briefly investigate two impacts of spatial blocking, of the kind used in Sec-1556

tion 5. Spatial blocking is a process in which regions of the global space are separated1557

into blocks where CaStLe is applied individually and independently. This can be done1558

for the sake of interpretability and to help ensure the spatial causal structure is uniform1559

and homogeneous in the blocked space, satisfying Assumption S2.1560

First, we consider the impact of block size on the HSW-V case study. In our demon-1561

stration in Section 5.1, we approached block size heuristically, and we chose a relatively1562

large block size to demonstrate correctness saliently. We found that results are gener-1563

ally robust to larger and smaller block sizes in the HSW-V case. In Figure H1, we show1564

that the recovered dynamics in each stencil are generally the same over space for each1565

block size. We see that larger block sizes are easier to interpret at a glance, while smaller1566

sizes describe more nuance. We also found that results were generally robust to block1567

size in the E3SMv2-SPA case.1568

Second, we consider the impact of a blocking strategy for causal discovery gener-1569

ally by comparing results of the PC algorithm to one block in E3SMv2-SPA to CaStLe-1570

PC’s results from the same data. Our comparison of CaStLe and the PC algorithm in1571

Figure 4 make it clear that CaStLe captures the spatial evolution of Mt. Pinatubo’s plume1572

much more effectively and about 80,000 times faster. However, one may be concerned1573

that sparsity and correctness could be achieved with blocking alone. In Figure H2a, PC1574

struggles to estimate an interpretable and physically meaningful graph of the dependence1575

structure in this area because of the signal redundancy between nonadjacent grid cells1576

and that there are only 20 observations per grid cell and 25 grid cells. Figure H2b illus-1577

trates much better performance from CaStLe, in which CaStLe learns a stencil from the1578

region and projects it back into the original grid space.1579
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Figure H1: Results of CaStLe applied to HSW-V 21 days after the Mt. Pinatubo erup-
tion with three different block sizes, 12◦ × 12◦, 20◦ × 20◦, and 60◦ × 60◦. We find that
results are generally consistent over the same area for each block size, with smaller block
sizes allowing for additional nuance in some areas. Note that the 20◦ × 20◦ block panel is
similar to the results shown in Figure 3, but more longitudes were added to get a space
factorable by more integers, such as 12, 20, and 60.
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(a) PC algorithm results (b) CaStLe results

Figure H2: The PC algorithm and CaStLe applied to E3SMv2-SPA in the 15◦×15◦ block
between 15◦ to 30◦N and 75◦ to 90◦E. from the day of the eruption to 20 days later. PC
struggles to estimate an interpretable and physically meaningful graph of the dependence
structure in this area. In contrast, CaStLe is able to identify an interpretable dependence
structure that represents the local dynamics within the space.
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Appendix I Analysis of Assumption Violation Examples1580

Here, we evaluate the impacts of potential violations of CaStLe’s assumptions in1581

our study of E3SMv2-SPA from Section 5.2.1582

I.1 Time Resolution is Too Coarse (Assumption T1)1583

The dataset’s time resolution can determine if the temporal locality assumption1584

(T1) holds. If the time resolution is too coarse, the temporal causal structures may be1585

marginalized out or unmeasured. Dependencies between neighboring grid cells may not1586

be manifested in the sparse time sampling. Here, we explore how our study of E3SMv2-1587

SPA from Section 5.2 changes after coarsening the temporal resolution.1588

We coarsened the time resolution by two, from a daily to a two-daily resolution.1589

Figure I1: Results of using a coarsened temporal resolution (two-daily) in the E3SMv2-
SPA study. CaStLe finds many fewer links in this setting. It is clear that when time is too
coarse, causal structures fail to be detected. However, the remaining links that are found
are largely true positives, suggesting that CaStLe is relatively robust to coarser time sam-
pling.

Figure I1 demonstrates that CaStLe finds much fewer links when the time resolu-1590

tion is too coarse. However, the links that are detected are mostly consistent with known1591

advective processes.1592

I.2 Time Interval is Too Long (Assumption T2)1593

When the time interval is too long, there may be too many causal structures in the1594

data. This violates temporal causal stationarity (T2). Here, we investigate such a sce-1595

nario.1596

We first computed causal stencils for an extended period, between day 15, the day1597

of the eruption, to day 65. This is 30 days longer than our initial analysis from the start1598

of the eruption.1599
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Figure I2: Results of applying CaStLe to a longer time interval from day 15 to 65. CaS-
tLe identifies more links, indicating it is learning too many causal structures in the data,
but still finds many of the true positives we found in our initial study. This indicates that
many of the blocks in this interval have temporal causal stationarity, leading CaStLe to
perform adequately.

We then computed causal stencils for the entire period between day 15 to day 215,1600

roughly six months later.1601

Figure I3: Results of applying CaStLe to a time interval that is too long and contains too
many causal structures, day 15 to 200. We see that CaStLe identifies many links in each
block. Comparing them to the winds is ineffective because the wind arrows are averages
over the whole period rather than reflections of how they change in time, which CaStLe
is learning from. With such a density of links, it is further challenging to know which are
correct and which are spurious.

Figure I2 shows that when the time interval is longer, CaStLe identifies more links,1602

indicating it is learning too many causal structures in the data, but still finds many of1603

the true positives we found in our initial study. Figure I3 demonstrates the challenges1604

of applying CaStLe to a time interval that contains too many difference causal structures.1605

CaStLe identifies many links, creating uninterpretable stencils. The winds are a poor com-1606

parison because each arrow is a temporal average for that location, which is not repre-1607

sentative over the entire interval. CaStLe may be capturing many spurious links or cap-1608

turing all of the many fluctuating dynamics over the interval. Resulting is are uninter-1609

pretable stencils with unknown true and false positives. However, there are some blocks1610

in the equatorial regions with sparse stencils. That indicates that dynamics were rela-1611

tively stationary over the period.1612
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I.3 Grid Resolution is Too Coarse (Assumption S1)1613

An appropriate grid resolution is important for satisfying the spatial locality as-1614

sumption (S1). If the grid is too coarse then the underlying spatial structure may be marginal-1615

ized out or unmeasured. If it is too small, causal relationships may appear outside the1616

stencil neighborhood, requiring a radius-2 neighborhood implementation. Here, we in-1617

vestigate a grid resolution that is too coarse.1618

We coarsened the grid to 9◦, rather than the 3◦ used in Section 5.2. Given that,1619

to maintain 5× 5 grid cells per block, each block is again 45◦ × 45◦.1620

Figure I4: Results of using a coarse grid (9◦) in the E3SMv2-SPA study. We find that
CaStLe performs very well overall. There are few false positives and it clearly captures
the overall advection dynamics of the system.

In Figure I4, we see that CaStLe performs very well overall. There are few false1621

positives and it clearly captures the overall advection dynamics of the system.1622

We also coarsened the grid to 18◦, resulting in 90◦×90◦ blocks. In Figure I5, CaS-1623

tLe performs well in the early time interval, clearly identifying the east-to-west advec-1624

tion pattern. However, in the later time interval, it finds no spatial structures apart from1625

autodependencies in each block. This is likely because the east-to-west advection is weaker1626

in this period and the grid is too coarse to capture the narrower bands of northward ad-1627

vection that dominates the interval.1628

We find that CaStLe is very robust to this assumption violation. It captures all of1629

the most dominant advection patterns, while struggling to find smaller, weaker ones.1630

I.4 Block Sizes are Too Large (Assumption S2)1631

In Appendix H, we found that CaStLe’s output was robust to very large and very1632

small block sizes. Spatial blocks are intended to isolate regions such that only one un-1633

derlying spatial causal structure exists in the block. If the blocks are too large, then As-1634

sumption S2 may be violated.1635
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Figure I5: Results of using a coarse grid (18◦) in the E3SMv2-SPA study. CaStLe per-
forms well in the early time interval, clearly identifying the east-to-west advection pat-
tern. However, in the later time interval, it finds no spatial structures apart from autode-
pendencies in each block. This is likely because the east-to-west advection is weaker in
this period and the grid is too coarse to capture the narrower bands of northward advec-
tion that dominates the interval.

In Figure I6, we used block sizes equal to 45◦ × 45◦. Here, each block has 15 ×1636

15 grid cells. This is in contrast to the 5×5 grid cell, 15◦×15◦ blocks used in Section1637

5.2.1638

We find that while true positives remain, several false positives appear. Some pos-1639

itives may be the result of identifying multiple causal structures correctly within the space,1640

while others may be confused results found because of the high density of links. In fur-1641

ther testing with intermediate block sizes, we found that CaStLe is moderately robust1642

to this assumption violation. As block sizes approach a more appropriate size, false pos-1643

itives diminish and true positives remain.1644
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Figure I6: Results of using block sizes too large in the E3SMv2-SPA study. We see that
many true positives are found, but many false positives as well. CaStLe seems to identify
multiple contradictory causal structures within many cells, which may lead to more spuri-
ous links discovered. Even where links appear correct, they are largely uninterpretable in
the presence of contradictions.
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Appendix J Additional GCM Results1645

Figure J1 depicts results of implementing CaStLe with the Bayesian score optimiza-1646

tion causal discovery algorithm, DYNOTEARS. We also presented results of DYNOTEARS1647

applied to our VAR benchmark in Section 6.1. Here, we show that CaStLe-DYNOTEARS1648

is able to recover comparable results to the CaStLe-PC-stable results shown in Section1649

5.1.1650

8.5 days post 
eruption

14.75 days 
post eruption

21 days post 
eruption

20°S

40°N

20°S

40°N

20°S

40°N

120°W 140°E0°

Figure J1: Application of CaStLe-DYNOTEARS to HSW-V simulation of the 1991 Mt.
Pinatubo eruption. The stencils estimated by CaStLe (white) capture the underlying
high-altitude wind fields (green) using only satellite-measured AOD, with near perfect
accuracy in high aerosol regions (red-orange). On longer horizons (bottom row), CaStLe
is able to recover equatorial wind currents as far away as South America, half-way around
the world from Mt. Pinatubo (white triangle). CaStLe accurately identifies the prevailing
westerly atmospheric winds because it was able to identify the space-time dependence
between neighboring grid cells.
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Appendix K Additional VAR Results1651

In Section 6.1, we demonstrated the strong performance of CaStLe on VAR-generated1652

space-time data with fixed sparsity level d = 4; in particular, CaStLed variants uniformly1653

improve over the performance of equivalent unstructured causal discovery algorithms.1654

We repeat this analysis for a variety of sparsity levels in Figures K1 and K2 for the MCC1655

and F1 score similarity metrics, respectively. As in Figure 6, the CaStLed variants con-1656

tinue to significantly outperform across all sparsity levels, d; furthermore, as noted above,1657

we observe that CaStLe can correctly estimate the underlying grid even on as few as T =1658

10 time samples when a sufficiently large grid is observed; non-CaStLe methods strug-1659

gle on larger grid sizes, consistent with our analyses in the previous section. A time limit1660

of 48 hours of wall-clock time was applied for each individual graph estimation: perfor-1661

mance properties of methods that did not terminate during this window are not shown1662

(e.g., DYNOTEARS with d = 6; T = 10; N = 10).1663
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Figure K1: Matthews correlation coefficient (MCC) comparison between CaStLed and
non-CaStLed causal discovery approaches on 2D VAR dynamics for each sparsity level,
including Granger causality (orange), PC (green), PC-Stable-Single (cyan), PCMCI (red),
DYNOTEARS (purple), and a statistical model of the data generating process (blue). See
Section 6.1 for experimental details. –57–
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Figure K2: F1 score comparison between CaStLed and non-CaStLed causal discovery
approaches on 2D VAR dynamics for each sparsity level, including Granger causality (or-
ange), PC (green), PC-Stable-Single (cyan), PCMCI (red), DYNOTEARS (purple), and
a statistical model of the data generating process (blue). See Section 6.1 for experimental
details. –58–
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Appendix L PC-Stable-Single1664

For the convenience of the reader, we include pseudo-code for the PC-Stable-Single1665

algorithm of Runge, Nowack, et al. (2019), itself an adaptation of the PC-Stable algo-1666

rithm of Colombo and Maathuis (2014). We use this as the PIP used for the CaStLe-1667

based analyses shown in Sections 5.1.1, 5.2, and Appendix D. As our experiments in the1668

proceeding section show, PC-Stable-Single exhibits small, but consistent improvements1669

over alternative PIP choices.1670

Algorithm 2 PC-stable-single
Precondition: Time series dataset X = {X1, X2, ..., XN}, selected variable Xj , maxi-

mum time lag τmax (default τmax = 1), significance threshold αP C , maximum condi-
tion dimension pmax (default pmax = Nτmax

), maximum number of combinations qmax

(default qmax = 1), conditional independence test function I.
1: function CI(X, Y, Z)
2: Test X ⊥⊥ Y |Z using test statistic measure I
3: return p-value, test statistic value I

4: Initialize set of parents P̂(Xj
t ) = {Xi

t−τ : i ∈ {1, ..., N}, τ ∈ {1, ..., τmax}}
5: Initialize dictionary of test statistic values Imin(Xi

t−τ → Xi
t) =∞ ∀Xi

t−τ ∈ P̂(Xj
t )

6: for p = 0, ..., pmax do
7: if |P̂(Xj

t )| − 1 < p then
8: Break for-loop ▷ Algorithm has converged
9: for all Xi

t−τ in P̂(Xj
t ) do

10: q = −1
11: for all lexicographically chosen subsets S ⊆ P̂(Xj

t ) \ {Xi
t−τ}, with |S| = p do

12: q = q + 1
13: if q >= qmax then
14: Break from inner for-loop
15: Run CI test to obtain (p-value, I) ← CI(Xi

t−τ , Xi
t ,S)

16: if |I| < Imin(Xi
t−τ → Xi

t) then ▷ Store min. I of parent among all tests
17: Imin(Xi

t−τ → Xi
t) = I

18: if p-value > αP C then ▷ Removed only after all Xi
t−τ have been tested

19: Mark Xi
t−τ for removal from P̂(Xi

t)
20: Break from inner loop
21: Remove non-significant parents from P̂(Xi

t)
22: Sort parents in P̂(Xi

t) by Imin(Xi
t−τ → Xi

t) from largest to smallest
23: return P̂(Xi

t)
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Open Research Section1671

The data generated and used for our HSW-V, VAR, and PDE experiments in Sec-1672

tions 5.1, 6.1, and Appendix D are available on Zenodo via https://doi.org/10.5281/1673

zenodo.12701546 with GNU Lesser General Public License v3.0 or later (J. Nichol, 2024).1674

The data used for the E3SMv2-SPA experiments in Section 5.2 can be found in Brown1675

et al. (2024). The code for generating data, running experiments, and generating figures1676

has been archived in J. J. Nichol (2025). Future versions of CaStLe may be found at https://1677

github.com/jjakenichol/CaStLe.1678
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